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Preface

Welcome to the proceedings of the Power-Aware Computer Systems (PACS
2004) workshop held in conjunction with the 37th Annual International Sympo-
sium on Microarchitecture (MICRO-37). The continued increase of power and
energy dissipation in computer systems has resulted in higher cost, lower reli-
ability, and reduced battery life in portable systems. Consequently, power and
energy have become first-class constraints at all layers of modern computer sys-
tems. PACS 2004 is the fourth workshop in its series to explore techniques to
reduce power and energy at all levels of computer systems and brings together
academic and industry researchers.

The papers in these proceedings span a wide spectrum of areas in power-
aware systems. We have grouped the papers into the following categories: (1)
microarchitecture- and circuit-level techniques, (2) power-aware memory and
interconnect systems, and (3) frequency- and voltage-scaling techniques.

The first paper in the microarchitecture group proposes banking and write-
back filtering to reduce register file power. The second paper in this group op-
timizes both delay and power of the issue queue by packing two instructions
in each issue queue entry and by memorizing upper-order bits of the wake-up
tag. The third paper proposes bit slicing the datapath to exploit narrow width
operations, and the last paper proposes to migrate application threads from one
core to another in a multi-core chip to address thermal problems.

The second group of papers on power-aware memory and interconnects starts
with a contribution which proposes hardware–software co-operation to reduce
main memory power dissipation. The paper suggests combining process-level
information from the software and DRAM-bank-level information from the hard-
ware for significant power reduction. The second paper in this group uses compiler-
assist to make hardware prefetching more energy efficient by filtering out unnec-
essary and ineffective prefetching. The third paper explores modeling of external
bus power dissipation and evaluation of coding techniques for bus power reduc-
tion. The last paper proposes context-independent coding for reducing power
in off-chip interconnects to avoid the disadvantage of context-dependent coding
not being applicable to commodity memories because of requiring collaboration
between the memory controller and SDRAM.

The last group proposes frequency- and voltage-scaling techniques. The first
paper in this group recommends throttling processor clock speed during
low-utilization phases. The second paper scales the processor voltage according
to the CPU-boundedness of the application. The third paper investigates the po-
tential of hardware overprovisioning to increase throughput in data centers while
remaining within a power budget. The last paper shows a detailed breakdown
of power consumption in the various components of a modern laptop.



VI Preface

The success of PACS 2004 has been due to the high quality of the submissions,
the efforts of the Program Committee, and the attendees. We would like to thank
Vivek De for his informative keynote address, which described design challenges
and opportunities for power-limited microprocessors. We would also like to thank
Jose Gonzalez, Glen Reinman, Srikanth Srinivasan and other members of the
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and publicize the workshop.
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An Optimized Front-End Physical Register File
with Banking and Writeback Filtering
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Abstract. Register file design is one of the critical issues facing designers of
out–of–order processors. Scaling up its size and number of ports with issue width
and instruction window size is difficult in terms of both performance and power
consumption. Two types of register file architectures have been proposed in the
past: a future logical file and a centralized physical file.

The centralized register file does not scale well but allows fast branch mis–
prediction recovery. The Future File scales well, but requires reservation stations
and has slow mis–prediction recovery. This paper proposes a register file architec-
ture that combines the best features of both approaches. The new register file has
the large size of the centralized file and its ability to quickly recover from branch
misprediction. It has the advantage of the future file in that it is accessed in the
”front end” allowing about 1/3rd of the source operands that are ready when an
instruction enters the window to be read immediately. The remaining operands
come from bypass logic / instruction queues and do not require register file ac-
cess. The new architecture does require reservation stations for operand storage
and it investigates two approaches in terms of power–efficiency.

Another advantage of the new architecture is that banking is much easier to use
in this case as compared to the centralized register file. Banking further improves
the scalability of the new architecture. A technique for early release of short–lived
registers called writeback filtering is used in combination with banking to further
improve the new architecture. The use of a large front–end register file results in
significant power savings and a slight IPC degradation (less than 1%). Overall,
the resulting energy–delay product is lower than in previous proposals.

1 Introduction

Memory-based structures in the core of modern microprocessors have increasing energy
requirements as frequencies grow. One such structure is the register file. Its size and the
number of read/write ports required increases with issue width making it difficult to
implement at high clock frequencies.

Two main approaches to register file design were used in the past, neither of which
solved the above-mentioned problems. One approach was an architecture based on the
Future file, which has a logical register file updated in commit and the future register

B. Falsafi and T.N. Vijaykumar (Eds.): PACS 2004, LNCS 3471, pp. 1–14, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 M. Pericàs et al.

file in the ”front–end” holding the most recent, uncommitted value for each logical reg-
ister. The advantages of the future file are that it is not very large, has no renaming,
can be read in the front–end and is not written if a more recent instruction assigning
it is in the window. The disadvantages are that on branch mis–prediction, intermedi-
ate register values need to be recovered (typically after the mis–predicted branch com-
mits), it needs reservation stations in the back-end, and its size cannot be increased. The
mis–prediction recovery can lead to a significant IPC loss, especially given increasing
memory latencies.

An alternative approach is a single, large physical register file, without a separate
architectural register file. It is typically accessed after an instruction is scheduled to
execute, even if source operand values were available when the instruction entered the
window. This is the approach in the MIPS R10000 [1] and many later processors. Its
advantages are increased size and fast mis–prediction recovery. Disadvantages are more
complex renaming and longer value lifetime in the file due to lack of logical register
file. Overall, it needs to be both large and heavily multi–ported, making it difficult to
implement and increases its energy consumption significantly.

The new architecture proposed in this paper combines the best features of the two
above–mentioned approaches: arbitrary size and fast mis–prediction recovery of the
physical register file; and placement in the front–end, early operand read, and potential
lack of write–back of the future file. It can be thought of as a physical register file moved
to the front end and accessed after renaming. This allows a large fraction of operands
to be accessed as an instruction enters the window, which is now the only read access
to the register file. These values are stored in ”reservation stations” integrated into the
instruction queue, which can also be thought of as a replicated portion of the register
file. A value coming from writeback may be written to this file if there are instructions
waiting for it. Finally, many registers hold values for mis–prediction recovery, some of
which can be released if they cannot affect recovery.

The approach proposed here uses a single register file containing all physical reg-
isters, the Front-end Physical Register File (FPRF). Thus restarting execution after a
mispredicted branch can be done using a rename map recovery from check-points made
on conditional branches.

As source operand registers are renamed, it can be determined if a register value has
already been computed. The FPRF is read only in this case, significantly reducing its
access frequency. Combined with the higher IPC due to faster branch recovery, it has a
better energy-delay product compared to the two traditional approaches.

A new structure to hold such ”early read” values is created in the instruction queue
payload RAM. Its function is similar to that of reservation stations. It is smaller than
the physical register file and thus consumes less energy. It is written into by com-
pleting instructions, if the produced value is a source operand of a waiting
instruction.

This paper also investigate the use of banking in the FPRF architecture. Due to lower
access frequency of the FPRF this is much easier to do than in a standard centralized
physical register file Finally, writeback filtering, a technique to eliminate unnecessary
writebacks into the register file is investigated and shown to be quite effective.
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2 Related Work

The body of related work on register file energy optimization is large. Many recent
papers have proposed mechanisms to reduce the number of the ports by means of mod-
ifying the register file architecture, such as [4] [5] [6] [7]. A reduced number of ports
may be more efficient both in terms of energy and access time, which can improve
performance.

A different approach is to reorganize the registers into several files, concentrating
most activity on small files with low power consumption. [8] is an example of this
approach based on the isolation of narrow operands. Hierarchical register files, such as
those presented in [9] [10] [11] and clustering techniques such as [12] [5] are another
example of this technique, which effectively trades size, speed and power consumption.

Another research direction has focused on changing the register allocation algorithm
to reduce the register requirements of the architecture. Early Release frees registers
before the commit stage of the next instruction that writes to the same logical registers
[13] [14] [15]. Virtual registers [16] try to delay the allocation of the physical register
until the writeback stage of the instruction. Another approach to reduce registers is to
exploit repeated values in the registers [17] [18].

Our approach is somewhat based on the Future File organization which was pro-
posed in 1984 [19]. In the original proposal, operands are provided to instructions via a
logical register file in the front-end which received the name of Future File. The main
difference with our architecture is that we are basing our design around the concept of
physical registers to identify the state of the processor. Thus, while a Future File archi-
tecture can only recover from a mispredicted branch by draining the ROB, our proposed
architecture can recover directly from the physical registers. Future File architectures
are still being used in the form of the AMD K7 and K8 microarchitectures [20].

The future file can be extended with rename buffers to provide access to the full
processor state at once. This has been implemented in the PPC620 [3] and POWER3
processors. However, these two processors still require the architectural state to be
copied from the rename buffers during retirement. Having an architectural register file
in the front-end shortens the pipeline one stage (access can be performed in parallel to
rename stage) but increases the number of on-chip register transfers.

Research by Tseng et al. on banked register files [21] proposed an efficient imple-
mentation of banking for the register file of a MIPS R10000-like architecture. In the
following sections is will be compared to the architecture proposed in this paper.

Finally, the Writeback Filtering technique, based on the release of short-lived val-
ues, is described in [22] and, in the context of VLIW architectures, in [23]. However, as
will be shown here, the specific architectecture presented here allows to support Write-
back Filtering in innovative ways.

3 Front-End Physical Register File

This section describes the Front-End Physical Register File Architecture (FPRF). The
FPRF pipeline provides instructions with their operands as soon as the operands are
available. Further, it implements a central physical register file in the front-end that
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Fig. 1. The Front-End Physical Register File Architecture

allows for fast recovery with little complexity. It also allows to apply banking with high
efficiency.

The FPRF Architecture, like a Future File, reads available registers in the front end.
However, in this approach the registers are accessed via a mapping into a centralized
register file that contains all registers. This has two implications:

1. Access to computed values in the front-end needs to be delayed until the rename
stage has completed.

2. The number of registers in the front-end, being equal to the total number of regis-
ters, is much larger than it is in a Future File Architecture.

Figure 1 shows the FPRF architecture. Instructions, after going through the decode
stage, enter the rename stage where source and destination registers are mapped to
physical registers. Using this information an instruction may access the FPRF, a two
stage process consisting of arbitration and data access. After available values have been
given to the instruction, it is inserted into the corresponding instruction queue.

The back-end pipeline works as follows: When a functional units generates a result,
the register tag is sent to all instructions in the queue. If there is an instruction waiting
for it, the value is written into the corresponding entry of the Value Register File (VRF),
which is part of the payload RAM of the instruction queue. The VRF is driven by the
wakeup logic signals and can be implemented as a register file that does not require a
decode stage. The value also gets written into the FPRF, as indicated by its physical
register designator. There is also a possibility that a value is bypassed to a dependent
instruction.

3.1 FPRF Pipeline

The pipeline of the FPRF Microarchitecture is shown in Fig. 2. It adds one stage to
a commonly used 8-stage pipeline consisting of: fetch, decode, rename, queue, issue,
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operand read, execute, writeback and commit. To support FPRF access in the front-end,
two stages are added to the pipeline: arbitration and FPRF Read. In the back-end the
operand read stage disappears. This reduces the length to a single additional stage.

In the first new stage the source registers are analyzed to check for bank conflicts in
the FPRF access. Conflicts stall all prior stages.

During rename, it is checked if the source registers have computed values. This is
implemented via a bit vector with as many entries as logical registers. In the case of
the Alpha ISA, modeled here, this requires maintaining two 32-bit vectors, one for the
integer and another for the floating point registers. Each entry of this bit-vector indicates
whether the corresponding logical register has a computed value. In case the computed
value is available a read to the corresponding FPRF register is started.

During the arbitration cycle, priority is given to ”older” instructions to access the
operands. This makes sure that the front-end does not dispatch instructions to the in-
struction queues out-of-order.

The number of read ports for each bank has to be at least two, because some in-
structions must obtain both operands from the same FPRF bank.

Once arbitration has been performed the FPRF read occurs. After the instruction has
read the available values it is inserted in the instruction queues. This happens during the
Queue stage. At the same time, the register values are inserted into the VRF.



6 M. Pericàs et al.

It is clear that the access rate to the FPRF is lower than to the centralized back-
end physical register file. Lower access rate means that less conflicts will occur in the
front-end and also that it will consume less energy. It was observed that the number
of integer operands that are obtained from the FPRF is about 40% of the total while
for floating point operands this number decreases to around 20%. Figures 3 and 4 show
the distribution of integer and fp operand sources averaged over 100 million instructions
for each Spec2000 benchmark. The boxes labeled FPRF account for operands that were
read from the FPRF. The boxes labeled WRITEBACK are for operands that were written
directly into the VRF from the writeback stage. Finally, the label BYPASS refers to those
values that are sourced from the bypass network.
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Fig. 4. Source of FP Operands

In the event of a branch misprediction the FPRF architecture behaves exactly like
the MIPS R10000. First, the processor immediately aborts all instructions fetched along
the mispredicted path. Next it restores the register mapping from the branch stack and
finally, it starts fetching instructions from the correct path.

3.2 Read Sharing

Accesses to the same logical registers are often clustered during program execution. For
example, many instructions use the same logical register for both register sources (eg
ADD R2, R2, Rd). On the other hand it is also fairly common that the same register
is sourced by several instructions without being written to. Such register accesses have a
high probability of bank conflict. This suggests that conflicts in the access to the FPRF
can be effectively reduced by using the technique known as read sharing [10]. Read
sharing allows multiple reads of a same register to happen using a single local port
which is connected to several global ports. Previous work on banked register files by
Tseng et al. [21] has also used this approach. Read sharing will be evaluated later in the
context of the FPRF architecture.
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3.3 Writeback Filtering

In the FPRF implementation described so far all values are written back to the FPRF
during the writeback stage. The front-end of the FPRF needs only to maintain copies
for those physical registers that may be needed in the future. This includes all currently
mapped registers and all registers that may be needed in the case of a misspeculation
or exception recovery. The total number of registers that are generated by writeback is
larger than these two numbers combined. Many registers that are renamed twice in a
short interval do not appear in any of the mappings. Their storage will not be needed
after the consumer reads the value. If this can be detected in time, then the writeback
can be filtered and the write to the FPRF can be eliminated. To implement this strategy
the processor needs to analyze the mapped registers in all rename checkpoints plus
the current mapping and decide if the register that is being written back belongs to
the processor state. Checkpoints need to be taken at all instructions that may cause a
replay. There are many such instructions but the vast majority are conditional branches
and loads. Registers that are not referenced anywhere are candidates to be filtered out
during writeback.

One very interesting property of the writeback filtering concept is that lazy imple-
mentations can be built that are out of the critical path. The information whether an
operand needs to be written back or not can be computed right after the rename stage.
However, the operand itself will not be produced until the execution stage has com-
pleted, which is at least 5 cycles in the future. In general we can delay the computation
of the filter mask a number of cycles equivalent to the distance between rename and
writeback. However it has to be noted that delaying this computation will allow many
unnecessary writebacks to happen because a physical register that is no longer neces-
sary may appear as mapped in the filter mask even though it does not belong anymore
to the current mapping.

This lazy writeback scheme allows the designer to propose slower but pipelined
hardware structures to compute the filtering mask. For example, one proposal would be
to use a slow multistage OR structure to compute the OR of the several checkpointed
rename maps, assuming that a CAM-style renamer is being used. We expect such a
structure to be slower, but also less power-hungry compared to precise proposals based
on counters such as [13].

Section 5 presents performance results on writeback filtering for a scheme that com-
putes the filter mask immediately. The lazy scheme has not been evaluated but it is
expected to have similar performance.

4 Experimental Setup

For the evaluation of the FPRF architecture a heavily modified execution driven simu-
lator based on SimpleScalar was used. The simulator executes binaries compiled for the
Alpha ISA. Our benchmark suite consists of all benchmarks of the Spec2000 suite com-
piled with Digital cc using ”-O2”. We run the benchmark for 100 million of committed
instructions.

First a baseline out-of-order microarchitecture with a centralized back–end RF was
simulated and then extended using the enhancements proposed in this paper. Finally,
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Table 1. Common parameters for all configurations

Fetch/Issue/Commit Width 4 instructions/cycle
Branch Predictor Combined bimodal + 2-level
I-L1 size 32 KB, 4-way, 1 cycle latency
D-L1 size 32 KB, 4-way, 2 rd/wr ports, 2 cy-

cle latency
D-L2 size 256 KB, 4-way, 2 rd/wr ports, 10

cycle latency
Memory Width / Latency 32 bytes / 100 cycles
Ports to the Register File 8 Read & 4 Write
Reorder Buffer Size 128
Integer/FP Physical Registers 160 / 160
Load/Store Queue 128 entries
Integer/FP Queue 32 entries / 32 entries
Integer/FP Functional Units 4 (latency 1) / 4 (latency 2)

we implemented the model described in [21] for comparison. The common parameters
of all configurations are shown in Table 1.

To evaluate the proposal with the read sharing technique, the 6 configurations sum-
marized in Table 2 and described below were simulated.

1. Base-SHORT is the optimal baseline configuration. Two baselines have been used
to benchmark the proposal. Both Base-SHORT and Base-LONG simulate an out
of order configuration with a full-ported centralized physical register file in the
back-end. This architecture is based on the MIPS R10000 microarchitecture [1].
Base-SHORT simulates an architecture with a three-stage front-end and a six-stage
back-end. This configuration has a pipeline that is one stage shorter than the FPRF
pipeline. The performance will be higher not only because it does not have conflicts
in accessing the register file, but also because the branch misprediction penalty is
smaller than in the FPRF proposal. This is the reason whye Base-LONG is intro-
duced.

2. Base-LONG is an architecture identical to Base-SHORT, but with an additional
stage in the front-end. This model is identical to the FPRF model in number of
cycles paid when a branch misprediction happens.

3. FPRF-8B2R2W is the FPRF with 8 banks, 2 read ports and 2 write ports each. It
matches the configurations that Tseng et al. present in their paper on banked register
files [21]. This configuration is the base case without optimizations. The pipeline
depth is equal to Base-LONG.

4. FPRF-8B2R2W-RS is identical to the FPRF-8B2R2W configuration plus read shar-
ing as described in Sect. 3.2.

5. BMRF-OPT is an optimistic implementation of the banking strategy described in
[21]. This proposal needs to speculatively issue instructions to the functional units.
If later a conflict occurs when the instruction wants to read its operands, a bubble
is inserted in the pipeline for the conflicting instruction while the correct state of
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Table 2. Main differences between configurations

Configuration #Banks Read Ports Write Ports Read Sharing Bubble? Pipeline
per Bank per Bank Length

Base-SHORT 1 Unlimited Unlimited NO - 9
Base-LONG 1 Unlimited Unlimited NO - 10
FPRF-8B2R2W 8 2 2 NO - 10
FPRF-8B2R2W-RS 8 2 2 YES - 10
BMRF-OPT 8 2 2 YES NO 10
BMRF-STALL 8 2 2 YES YES 10

the microarchitecture is recovered. This model is optimistic because it assumes that
there is no need to kill the full issue group and that the architecture can recover at
once.

6. BMRF-STALL is the same implementation as BMRF-OPT but in this case it takes
into account that a full bubble is inserted in the pipeline when a conflict occurs in
the access to the register file and thus the full issue group is killed. This configura-
tion approximates the work done in Tseng et al. [21] but, as will be verified later,
it is still optimistic because some constraints have been left out of the simulated
architecture.

For the evaluation of writeback filtering the FPRF-8B2R2W-RS architecture has been
used.

5 Performance Evaluation

First, the amount of instruction level parallelism in the FPRF architecture is evaluated.
On average, the architecture should be slower than both Base-SHORT and Base-LONG,
because these architectures never stall and, in the case of Base-SHORT, the pipeline is
shorter which makes branch recovery faster for this architecture.

The entire SPEC2000 benchmark suite was simulated for each of the 6 proposed
configurations. To ease understanding, only averages and a few selected benchmarks
are shown.

Figure 5 shows the IPC results relative to Base-SHORT. For the full SPEC average
(rightmost column) the FPRF architecture, with no optimizations, is only 1.1% worse
than Base-LONG. Applying the read sharing optimizations reduces this gap to 0.3%.
Both differences are small. However, as can be seen, the behavior shows a lot of vari-
ance across benchmarks. For many applications the improvement is far from trivial.

The BMRF-OPT and BMRF-STALL implementations that model the banking strat-
egy described in [21] performed on average 1.9% and 2.7% worse than Base-LONG,
respectively. This is because stalls in the back-end have higher impact on performance
than stalls in the front-end. These configurations use the read sharing optimization.
Compared to our FPRF-8B2R2W-RS implementation, the BMRF implementations lose
1.6% and 2.3% IPC. Our values for the BMRF-STALL implementation are 1.5% better
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than the values reported by the original paper. This variation is small and reasonable
considering the differences between the modeled architectures: different numbers of
physical registers and no operand partitioning between right and left register ports in
the simulated BMRF models.

Comparing SpecINT and SpecFP results observes that there is much more IPC loss
for integer benchmarks than for floating point programs. There are many reasons for
this. For the specific case of Base-SHORT and Base-LONG, the high rate of mispre-
dicted branches in integer applications is the cause for the IPC loss. FP programs have
fewer branches and they are more predictable. Other columns of the plot show similar
behavior. The reason FP programs have less IPC loss is because many more instructions
are in the instruction queues and stalls in the front-end can be easily absorbed by the
back-end. In addition , the fact that FP programs perform simultaneous FP and inte-
ger calculations helps to reduce the conflicts because both types of instructions access
different register files.

Finally, the four selected benchmarks (MCF, MESA, ART and GAP) show how
much the performance is dependent on program characteristics. The selected bench-
marks show the widest variation observed across all of the SPEC benchmark.

5.1 Energy Consumption

One of the main benefits of implementing banking is to reduce the power consumption
of the register file. The banking technique has long been known to reduce energy, but the
complexity of control logic and potential loss in IPC, have precluded its use in register
files. The banking scheme for the FPRF takes advantage of the reduced access rate to
this structure when it is located in the front-end.

In this section the energy requirements of the register files of the FPRF architecture
are evaluated. The energy model for the register file proposed by Rixner et al. [24] is
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used to obtain the energy of individual Rd/Wr access, which are then multiplied by
the number of accesses to the register file. In the results, the values are averaged over
all benchmarks of SPEC2000. Only the banked architectures are evaluated here using
two different organizations for the instruction queues. The first type of back-end uses a
centralized Value Register File. This is a heavily multiported structure (4 read ports and
10 write ports are needed). The results for this configuration are shown on the left side of
Figure 6 relative to the power consumed by the centralized Base-SHORT architecture.
The energy is given for both the FPRF and the VRF. The results show that the register
distribution and banking techniques effectively reduce the energy consumed. Up to 94%
of the Base-SHORT energy can be saved by combining the banked FPRF architecture
with read sharing. On the other hand, although the VRF has fewer accesses and only 32
entries, its large number of ports increases the energy consumption compared to [21],
which lacks a VRF. A detailed study of the VRF is outside of the scope of this paper.

 0

 2

 4

 6

 8

 10

 12

F
P

R
F

-R
S

F
P

R
F

B
M

R
F

-O
P

T

B
M

R
F

-S
T

A
LL

   
F

P
R

F
-R

S

F
P

R
F

B
M

R
F

-O
P

T

   
  B

M
R

F
-S

T
A

LL

R
F

 E
ne

rg
y 

re
la

tiv
e 

to
 B

as
e-

S
H

O
R

T
 (

%
)

VRF
FPRF

Fig. 6. Relative energy with a centralized VRF (left) and a distributed VRF (right)

An alternative organization based on multiple queues is also modeled, similar to the
POWER4 microprocessor [25]. This microarchitecture uses multiple small instructions
queues instead of one large centralized queue. Each queue has smaller issue capabilities
(1-way) and less entries, which considerably reduces the number of ports (only 1 read
port and 6 write ports, one for every source functional unit, are now required). 4 issue
queues of 8 entries for both integer and FP datapaths are used here. The energy of such
a distributed scheme is shown on the right side of Figure 6. Using this approach the
energy of the VRF is reduced by 82% and the total energy is now 18% below the power
consumed by the BMRF model. Using this IQ organization in the BMRF model would
have no effect as, like the Power4, this model still requires the presence of a centralized
register file that cannot be distributed. The new distributed scheme will have some IPC
loss, but this will affect all architectures. A detailed analysis of this technique is outside
the scope of this paper.
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5.2 Writeback Filtering

The energy of the FPRF can be reduced even more by using writeback filtering. This
technique has no effect on IPC, but it can have an impact on the energy because it
reduces the number of writes into the register file. We measured the number of write-
backs that can be filtered out from Spec2000 and observed that about 22% of all integer
writebacks could be filtered out using this technique. The number of floating point
writebacks is somewhat smaller, with 18% of all floating point results being short–lived
values, which are candidates for writeback filtering. The energy reduction is expected to
be somewhat smaller as only some writes but no reads are removed. For the full SPEC
suite, the energy due to accesses to the integer register file is reduced by 12.1%. For
SpecFP the energy due to accesses to the floating point register file is reduced by 13%.

These improvements are still limited. The main reason is the way load misses are
handled. The need to replay load misses forces to add registers that appear in load
rename maps to the rename stack where writeback filtering is analyzed. The number of
loads is large and so is the number of additional maps. Not all implementations force
loads to replay restarting from architectural state. Some processors use a scheme in
which instructions that depend on a load are kept in the instruction queues until the
load resolves in case they have to be reissued. This allows the processor to recover
directly from the issue queues in case of a load scheduling conflict. In such a scheme
less registers will be written back into the FPRF because many checkpoints will be gone.
As an alternative, loads can be associated to previous checkpoints taken on branches.
In the case of a load replay, the processor will recover from a previous checkpoint
and re-execute the load in the correct order. This approach, which is expected to suffer
marginal IPC degradation, is reminiscent of the concept of checkpointed commit [26].

In this alternative implementation on the FPRF up to 55% of all integer writebacks
and up to 67% of all FP writebacks can be filtered out. These values are much closer to
the expected gains. In terms of energy, this means that up to 30% of the energy can be
saved in the integer FPRF and up to 47% can be removed from the floating point FPRF.
These values may seem very large but it has to be remembered that the FPRF provides
only 20-40% of the operands, so the bulk of accesses to this register file are writes.
This is what makes the writeback filtering technique so attractive. On the downside,
maintaining load-dependent instructions in the queue until the resolution of the load
will have a negative impact on IPC because the queues will fill sooner. Therefore the
checkpointing approach is prefereable.

The use of writeback filtering is interesting because it allows to attack the energy
problem from two perspectives. Positioning the physical register file in the front–end
allowed to reduce the number of read accesses because many registers don’t have com-
puted values at this point. Writeback filtering, on the other hand, reduces the number of
writeback accesses. Thus this combination of techniques allows simultaneous reduction
in both read and write accesses.

6 Conclusions

This paper proposed and analyzed a new register file architecture combining the best
of the Future File and the centralized physical register file. This combination reduces
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RF access frequency and maintains fast misprediction recovery. It was shown that this
architecture is well suited for the application of register file banking with read sharing
and writeback filtering. Minimal IPC loss was observed when using a banked register
file, considerably less compared to a previous proposal where the physical register file
is in the back-end [21]. Only 0.3% of IPC was lost due to the banking conflicts, down
from 1.6% in the previous proposal.

Writeback Filtering was proposed to reduce the number of writes to the register file.
Two possible implementations of this were discussed. The first one used the architec-
tural state to replay loads while the second replayed the loads by associating them with
previous checkpointed branches.

The second configuration was able to remove about 60% of all writebacks, while
the first only removed about 20%.
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Abstract. Dynamic instruction scheduling logic is one of the most critical 
components of modern superscalar microprocessors, both from the delay and 
power dissipation standpoints. The delay and energy requirement of driving the 
result tags across the associatively-addressed issue queue accounts for a 
significant percentage of the scheduler’s overhead and also limits the design 
scalability. We propose two schemes to reduce the power consumption and the 
delays of the wakeup logic. Our first scheme – instruction packing – shares the 
associative part of an issue queue entry between two instructions, each with at 
most one non-ready source. As a result, the number of entries in the issue queue 
(and, hence, the length of the tag buses) can be reduced by a factor of two with 
almost no impact on the IPCs, because most instructions either enter the 
pipeline with at least one of their source operands ready, or do not make use of 
two source registers to begin with. Our second scheme – tag memoization – 
avoids driving the upper portion of the tags, if those bits did not change their 
values from what was driven on the same tag bus during the most recent 
broadcast. While instruction packing results in the reduced length of the tag 
buses, tag memoization reduced the number of tag lines that need to be driven. 
We evaluate our designs using detailed microarchitectural simulations of the 
SPEC 2000 benchmarks and the SPICE simulations of the issue queue layouts.

1   Introduction 

Modern superscalar processors use out of order execution to exploit instruction level 
parallelism. The dynamic scheduling engine employed in such processors often uses 
associative logic embedded into the issue queue entries to wakeup instructions that 
are awaiting a result. This is accomplished by storing the address of the source 
registers within the issue queue entries and using the comparators that match the 
stored source register values against the address of the result that is driven on tag bus 
lines. A significant amount of energy dissipation results as the destination register 
address is driven on the tag busses. Energy dissipation occurs when the tag bus lines 
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are driven because of the charging and discharging of the wire capacitance of the tag 
line itself and the gate capacitance of the devices that implement the tag comparators. 
As wire capacitances dominate, a significant fraction of the energy spent in waking up 
instructions is attributed to the power used for driving the tag busses. This is 
particularly true if comparators that dissipate energy only on a match are used within 
the issue queue [27]. 

The scope of this paper is to propose two fairly orthogonal techniques for reducing 
the energy dissipated in driving the tag lines. Our first approach reduces the effective 
length of the tag bus lines and the number of comparator bits driven by essentially 
reducing the number of issue queue entries through the opportunistic packing of two 
instructions into a single issue queue entry. Our second approach avoids the power 
dissipated in driving the tag lines by not driving the higher order bits in the tag bus if 
their value matches the corresponding values last driven on the same tag bus. We 
validate the power savings achieved by using our techniques through the cycle-
accurate simulations of SPEC 2000 benchmarks and the circuit simulations of the 
full-custom issue queue layouts. 

2   Instruction Packing 

In a traditional RISC-like processor where each instruction can have at most two 
register source operands, each issue queue (IQ) entry has two comparators, which 
allow the instruction to track the arrival of both sources by monitoring the tag buses. 
In general, however, such a design results is a grossly inefficient usage of the CAM 
logic, because of two reasons: 1) Many instructions have only one source register 
operand, and therefore do not require the use of two tags (and two comparators) in the 
first place, and 2) of the instructions with 2 source operands, a large percentage have 
at least one of the source operands ready at the time of dispatch, again rendering the 
second comparator unnecessary. Our simulations showed that on the average across 
SPEC 2000 benchmarks, about 83% of the dynamic instructions enter the scheduling 
window with at least one of their source operands ready. 

Fig. 1. Traditional IQ entry format 

These statistics have been presented before [4] and researchers have proposed 
different solutions to optimize the IQ design based on this inefficiency. In [4], the 
non-uniform IQ entry formats were used, i.e. some entries have a full set of tag 
comparators, other entries have just one comparator, and yet other IQ entries have no 
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comparators. In [28], the tag buses were subdivided into the slow buses and fast 
buses, such that the tag broadcast on the slow bus is delayed by one cycle. In this 
paper, we propose a different approach to optimizing the use of the CAM logic within 
the issue queue by packing multiple (two, for this paper) instructions into the same 
issue queue entry, effectively duplicating the RAM storage for these instructions 
(destination register addresses, literals, opcodes) and sharing the existing CAM logic. 
In effect, the aspect ratio of the issue queue changes: the number of issue queue 
entries become lower and the width of each entry goes up. In this section, we describe 
the details of our design. 

Figure 1 shows a format of the issue queue entry used in traditional designs. The 
following fields comprise a single entry: a) entry allocated bit (A), b) payload area 
(opcode, FU type, destination register address, literals), c) tag of the first source, 
associated comparator (tag CAM word 1, hereafter just tag CAM 1, without the 
“word”) and the source valid bit, d) tag of the second source, associated comparator 
(tag CAM 2) and source valid bit, and e) the ready bit. The ready bit, used to raise the 
request signal for the selection logic is set by AND-ing the valid bits of the two 
sources. 

If at least one of the source operands is ready at the time of dispatch, the tag CAM 
associated with this instruction’s IQ entry remains unused. To exploit this idle tag 
CAM, we propose to share one issue queue entry between two such instructions. An 
entry in the IQ can now hold one or two instructions, depending on the number of 
ready operands of the stored instructions at the time of dispatching. Specifically, if 
both source registers of an instruction are not available at the time of dispatch, the 
instruction is assigned an IQ entry of its own and makes use of both tag CAMs in the 
assigned entry to determine when its operands are ready. An instruction that has only 
one source register that is not available at the time of dispatch is assigned just one half 
of an IQ entry. The remaining half of the IQ entry may be used by another instruction 
that also has one of its source registers unavailable at the time of dispatch. Sharing an 
IQ entry between two instruction also requires the IQ entry to be widened to permit 
the payload parts of both instructions to be stored, along with the addition of flags that 
indicate whether the entry is shared between two instructions and the status of the 
stored instruction(s). Figure 2 shows the format of an issue queue entry that supports 
instruction packing. Each IQ entry is comprised of the “entry allocated” bit (A), the 
ready bit (R), the mode bit (MODE) and the two symmetrical halves: the left half and 
the right half. The structure of each half is identical, so we will use the left half for the 
subsequent explanations. 

A left half of each IQ entry contains the following fields: 

1. Left half allocated (AL) bit. This bit is set when the half-entry is allocated. 
2. Source tag and associated comparator (Tag CAM). This is where the tag of the 

non-ready source operand  for an instruction with at most one non-ready source is 
stored. 

3. Source valid left bit (SVL). This bit signifies the validity of the source from part 
b), similar to traditional designs. This bit is also used to indicate if the instruction 
residing in a half-entry is ready for selection (as explained later) 

4. Payload area. The payload area contains the same information as in the traditional 
design, namely: opcode, bits identifying the FU type, destination register address 
and literal bits. In addition, the payload area contains the tag of the second source. 
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Notice that the tag of the second source does not participate in the wakeup, because 
if an instruction is allocated to a half-entry, the second source must be valid at the 
time of dispatch. Compared to the traditional design, the payload area is increased 
by the number of bits used to represent a source tag. 

The contents of the right half are similar. The ready bit (R) is used when an 
instruction with two non-ready source operands is allocated into the full IQ entry, as 
explained below. To summarize, each entry in the modified IQ is divided into a left 
half and a right half, each is capable of storing an instruction with at most one non-
ready source operand, or the two halves can be used in concert to house an instruction 
with 2 non-ready source operands. In general, the issue queue entry can be in one of 
the following three states: 1) the entry holds a single instruction, both source operands 
of which were not ready at the time of dispatch, 2) the entry holds two (or one with 
another half free) instructions, each of which had at least one source operand ready at 
the time of dispatch, or 3) the entry is free. The “mode” bit, stored within each IQ 
entry as shown in Figure 2, identifies the state of the entry. If the mode bit is set to 1, 
then the entry maintains a 2-operand instruction, otherwise it either maintains one or 
two single-operand instructions or it is free. 

Since each entry can hold up to two instructions, fewer IQ entries are needed. 
However, despite the fact that each entry in the modified IQ shown in Figure 2 is 
somewhat wider than the traditional queue entry (due to the replication of the Payload 
area and three extra bits – AL, AR, and MODE), the amount of CAM logic per-entry 
does not change. Each entry still uses only two comparators – those are either used by 
one instruction, which occupies full entry, or are shared by two instructions, each 
located in half-entry. In the next few subsections, we describe the details of this 
technique. 

Fig. 2. Wakeup and Selection Logic Modified to Support Instruction Packing 

2.1   Entry Allocation 

To set up an issue queue entry for an instruction, the entry allocated bits 
corresponding to both halves (AL and AR), as well as the global “entry_allocated” bit 
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(A) are associatively searched in parallel with register renaming and checking the 
status of source physical registers. If the instruction is determined to have at most one 
non-ready source operand, the lowest numbered issue queue entry with at least one 
available half is allocated. If both halves are available within the chosen entry, then 
the instruction is written into the right half. After the appropriate half is chosen, both 
the “entry_allocated” bit of this half and the global A bits are reset. If an instruction is 
determined to have 2 non-ready source operands, then a full-sized entry is allocated, 
as dictated by the state of the A bits. The search for a full-sized and a half-sized entry 
occurs simultaneously, and the entry to be allocated is then chosen based on the 
number of non-ready source operands. This IQ entry allocation process is somewhat 
more complicated than similar allocation used in traditional designs, where just the A 
bits are associatively searched. However, there is no extra delay involved, because the 
searches occur in parallel. Similar issues with allocating the IQ entries are also 
inherent in other designs which aim to reduce the amount of associative logic in the 
queue by placing the instructions into the issue queue entries judiciously, based on the 
number of non-ready operands at the time of dispatch [4]. We will discuss what kind 
of information is written into the IQ for the various instruction categories later in the 
paper. But first, we describe how wakeup and selection are implemented in this 
scheme. 

2.2   Instruction Wakeup 

The process of instruction wakeup remains exactly the same as in traditional design 
for an instruction that occupies a full IQ entry (i.e. comes with 2 non-ready sources). 
Here, the ready bit (R) is set by AND-ing the valid bits of both sources. For 
instructions which occupy half of an IQ entry, the wakeup simply amounts to setting 
of the valid bit corresponding to the source that was non-ready when the instruction 
entered the IQ. The contents of the source valid bits are then directly used to indicate 
that the instruction is ready for selection (the validity of the second source is implicit 
in this case). The selection logic details are described next. 

2.3   Instruction Selection 

The process of instruction selection needs to be slightly modified to support 
instruction packing. To make the explanation easier, we assume that a 32-entry IQ is 
packed into a 16-entry structure, such that each entry is capable of holding two 
instructions with at most one non-ready source each, or one instruction with two non-
ready sources. In a 32-entry IQ design, there are 32 request lines that can be raised by 
the awakened instructions – one line per IQ entry. In the instruction packing scheme, 
each of the two halves of each of the 16 entries requires a request line, thus retaining 
the same total number of request lines (32) and resulting in a similar complexity of 
the selection logic. In addition, the ready bits, used by the instructions allocated to full 
entries, also require request lines. Consequently, a straightforward implementation of 
the selection logic would require 48 (3x16) request lines, thus increasing the 
complexity, delay and power requirements of the select mechanism.  

Such an undesirable elevation in the complexity of the selection logic can be 
avoided by sharing one request line between the R and the SVR bits. The shared 
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request line is raised if at least one of the bits (the R or the SVR) is set. The R and the 
SVR bits are both connected to the shared request line through a multiplexor, which is 
controlled by the “mode” bit of the IQ entry (Figure 2). Consequently, the overall 
delay of the selection logic increases only slightly – by the delay of a multiplexor. 
Notice also that the MUX control signal (the “mode” bit) is available in the beginning 
of the cycle when the selection process takes place (the “mode” bit is set when the 
issue queue entry is allocated). The request line driven by the SVL bit is controlled by 
the p-device, whose gate is connected to the “mode” bit. This request line will be 
asserted only if the “mode” bit is set to 0 (indicating that the IQ entry is shared 
between two instructions) and the SVL bit is set to 1. 

Note that the only part of the selection logic that is modified is the process of 
asserting the request lines. The rest of the selection logic is unchanged compared to 
the traditional designs. The overall delay of the selection logic is thus increased by the 
delay of the multiplexor, whose control signal is preset (as the value of the “mode” bit 
is available as soon as the IQ entry is allocated). 

2.4   Instruction Issue 

We define instruction issue as a process of reading the source operand tags of the 
selected instructions and starting the register file access (effectively moving the 
instruction out of the IQ). When a grant signal comes back corresponding to the request 
line, which was shared between the R and the SVR, the issue logic has to know which 
physical registers have to be read. Conventionally, this information is conveyed by the 
contents of the tag fields. However, the register tags of an instruction with two non-
ready sources (i.e. the instruction that occupies full IQ entry) and the register tags of an 
instruction with one non-ready source are generally stored in different locations within 
the IQ entry. In the former case, the tags are stored in the tag fields connected to both 
comparators – one tag is stored in the left half of the entry and the other tag is stored in 
the right half of the entry. In the latter case, both tags are stored in the right half of the 
entry, such that the tag of the non-ready operand is connected to the comparator and the 
other tag is simply stored in the payload area. Given this disparate locations of the 
source register tags, how would the issue logic know which tags to use when the grant 
signal corresponding to a shared request line comes back?  

One solution is, again, to use the contents of the “mode” bit and a few 
multiplexors. This will, however, slightly increase the delay of the issue / register 
access cycle. A better solution, which avoids the additional delays in instruction 
issuing altogether, is as follows. When an instruction with two non-ready sources is 
allocated to the issue queue, the tag, which is connected to the left half comparator, is 
also replicated in the payload area storage for the second tag in the right half. As a 
result, both tags will be present in the right half of the queue, so these tags can be 
simply used for register file access, without regard for the IQ entry mode.   

2.5   Benefits of Instruction Packing 

Instruction packing, as described in this section, has several benefits over the 
traditional issue queue designs in terms of layout area, access delays and power 
consumption.  
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The area of the issue queue decreases, because compared to the traditional designs, 
the amount of RAM storage does not change (we use twice as fewer entries, but each 
entry has about twice the amount of RAM), but the amount of associative logic is 
reduced by a factor of two.   

The delay of the wakeup logic is reduced, because the tag buses become much 
shorter and the capacitive loading on these buses is also significantly reduced – the 
delay in driving the tag bus (which is a major component of the wakeup latency) is 
roughly reduced by half. Furthermore, shorter bitlines can potentially reduce the IQ 
access delays during instruction dispatching (setting up the entries) and issuing 
(reading out the register tags and literals). Finally, for the same reasons the power 
consumption is also reduced. Another potential reason for the reduction in the power 
consumption has to do with the use of fewer comparators. In the instruction packing, 
the tags of the source registers ready during dispatching are never associated with the 
comparators. In the traditional designs, each and every source tag is hooked up to a 
comparator. Unless these comparators are precharged selectively (based on whether 
or not a given IQ slot is awaiting for the result), unnecessary dissipations can occur 
than comparators associated with the already valid sources continue to fire.  

In the result section, we quantify these savings using detailed simulations of SPEC 
2000 benchmarks and also circuit simulations of the IQ layouts. Notice that all these 
benefits are achieved with essentially no degradation in the IPCs (committed 
Instructions Per Cycle). This is because most instructions (our results show 83%) 
have at least one of their sources ready at the time of dispatch, thus rendering the 
performance loss due to the smaller number of IQ entries negligible. 

3   Tag Memoization 

The tag memoization scheme exploits the fact that the higher-order bits of the tags 
that are broadcasted within a short duration of each other are likely to be the same. 
The idea here is to conserve power expended in driving the tag by not driving the 
higher-order tag bits if they happen to match the higher-order tag bits that were driven 
on the same bus during the previous broadcast. The tag comparator used to match the 
tag on the bus is broken into two separate comparators, say Cu and Cl, to match the 
higher-order bits and the remaining lower-order bits, respectively. A 1-bit latch is 
inserted in between to remember if there was a match in the higher order bits with the 
previous broadcast. The match signal for an entry is derived by AND-ing the output 
of this latch with the output of the comparator for the lower order bits. Figure 3 
depicts this logic. We now describe this scheme in some detail. 

Let Lb designate the latch used within an IQ entry to remember the match with the 
upper order bits driven on bus b with the tag value stored within a register operand 
field of the IQ entry. The tag driver logic for tag bus b also uses a latch array, Ub, to 
remember the upper order bits of the tag pattern that was driven onto the tag bus b. 
The following two cases arise when a tag value is to be driven on a tag bus: 

If the upper bits driven on the bus b in the next broadcast match Ub, then only the 
lower order bits are driven on the tag bus. Entries that match the lower order bits and 
have their latch Lb set now produce a match signal. If, however, the upper order bits 
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driven on the bus b do not match the contents of Ub, then the following actions are 
taken concurrently: 

• The reset line shown in Figure 3 is driven to clear the contents of latch Lb in all of 
the IQ entries.   

• Both upper and lower order bits of the tag are driven out on bus b. 
• Ub is updated. 

Clearing Lb in this case allows each entry to produce a match based on all of the 
tag bits - both upper order and lower-order bits. 

The tag memoization scheme saves power by not driving the upper order bits of a 
tag bus whenever possible. The power savings are somewhat defeated by the need to 
drive the reset line on each tag bus, by the need to maintain the Ub latch, and 
dissipations within the Lb and the AND-gate used within each entry. One can save 
additional power dissipation by using the contents of Lb to disable Cu once Lb is set. 
Doing so prevents Cu from dissipating any power from false matches with the values 
floating on the upper order bits of the bus. 

From a delay standpoint, the AND-ing of Lb with the output of Cl adds a slight 
delay in the generation of a request signal from matching entries. This added delay is 
however compensated to some extent by the smaller delay of Cl.  (Cl has a smaller 
response time compared to that of a comparator that compares all bits of the tag 
value.) 

Fig. 3. Tag comparator configuration for the tag memoization scheme 

One can force additional savings from the memoization scheme by assigning tag 
broadcasts to a bus whose Ub matches the upper order bits of the tag value to be 
driven.  We call this "intelligent" tag bus assignment. There is, of course, some energy 
overhead in assigning tag broadcasts to specific buses in this case.  Another 
possibility, and one that we have not explored here, is to assign the tag values 
sequentially to instructions. This is possible in datapaths that use the ROB slots as 
physical registers or have rename buffers that are assigned from a circular FIFO. In 
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this paper, we only considered a datapath with the unified physical/architectural 
register file, where the allocation of physical registers can occur from anywhere 
within the register file, as dictated by the free list. 

The approach just described can be generalized to accommodate the segmentation 
of the tag comparator into more than two parts requiring an intervening latch in 
between consecutive segments. For example, an 7 bit tag comparator can be 
segmented into three parts: Ca(upper order two bits), Cb(next two bits), and Cr 
(remaining 3 bits). This arrangement requires two latches: one between Ca and Cb 
and another between Cb and Cr; there is a reset line for each latch. These latches may 
be set independently, allowing for the gating off of either set of bits, or both. The 
match signal is derived by AND-ing the contents of the intervening latches and the 
output of the comparator segment covering the lower order bits. 

Table 1. Configuration of the simulated processor 

Parameter Configuration 

Machine width 4-wide fetch, 4-wide issue, 4 wide commit 

Window size Issue queue: as specified,48 entry load/store queue, 96–entry 
ROB 

Function Units and 
Latency (total/issue) 

4 Int Add (1/1), 2 Int Mult (3/1) / Div (20/19), 2 Load/Store (2/1), 2 
FP Add (2), 2 FP Mult (4/1) / Div (12/12) / Sqrt (24/24) 

Physical Registers 128 combined integer + floating-point physical registers 

L1 I–cache 64 KB, 1–way set–associative, 128 byte line, 1 cycles hit time 

L1 D–cache 64 KB, 4–way set–associative, 64 byte line, 2 cycles hit time 

L2 Cache unified 2 MB, 8–way set–associative, 128 byte line, 6 cycles hit time 

BTB 2048 entry, 2–way set–associative 

Branch Predictor Combined with 1K entry Gshare, 10 bit global history, 4K entry 
bimodal, 1K selector 

Branch Mispred. Penalty 8 cycles minimum 

Memory 128 bit wide, 150 cycles first chunk, 1 cycles interchunk 

TLB 32 entry (I), 128 entry (D), fully associative, 12 cycles miss latency 

4   Simulation Methodology 

Our simulation environment includes a detailed cycle accurate simulator of the 
microarchitecture and cache hierarchy. While our simulator was developed from 
scratch, it uses the same binaries, system call interface and tools as the MIPS-like 
Simplescalar PISA ISA. All benchmarks were compiled with gcc 2.6.3 (compiler 
options: -O2) and linked with glibc 1.09, compiled with the same options. All 
simulations were run on a subset of the SPEC 2000 benchmarks consisting of 8 
integer and 7 floating-point benchmarks. In all cases, predictors and caches were 
warmed up for 1 billion committed instructions and statistics were gathered for the 
next 200 million instructions. Table 1 presents the configuration of the baseline 
processor. 
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For estimating the delay, energy and area requirements, we deigned the actual 
VLSI layouts of the issue queue and simulated them using SPICE. The layouts were 
designed in a 0.18 micron 6 metal layer CMOS process (TSMC) using Cadence 
design tools. A Vdd of 1.8 volts was assumed for all the measurements. 

5   Results 

5.1   Instruction Packing 

Table 2 shows the IPC loss due to instruction packing. These results are displayed in the 
form of a table rather than a graph because IPC differences are too small to be 
noticeable on the traditional bar graph. The columns, in order, show IPC results with a 
32-entry issue queue, a 16-entry issue queue with instruction packing, an 8-entry IQ, 
and a 4-entry IQ with packing. The results show that a 16-entry issue queue utilizing 
instruction packing performs within 0.5% of a traditional 32-entry IQ. The configuration 
with an 8-entry queue packed into 4 wider entries is only shown to demonstrate that 
packing does not significantly degrade the performance even for very small issue 
queues. Here, for example, the performance loss is only 5.3% on the average. 

Table 2. IPC for 32 and 8-entry traditional queues as compared to 16 and 4-entry queues 
supporting instruction packing 

Benchmarks 32IQ 16IQ_PACK 8IQ 4IQ_PACK 
Gzip 1.544 1.587 1.594 1.412 
Vpr 1.463 1.447 1.279 1.125 
Gcc 1.128 1.128 1.105 1.032 
Mcf 0.444 0.442 0.398 0.343 
Parser 1.317 1.304 1.234 1.118 
Vortex 1.996 2.001 1.908 1.672 
bzip2 1.594 1.546 1.480 1.272 
Twolf 1.209 1.161 1.104 0.968 
Wupwise 2.212 2.212 1.924 2.212 
Swim 1.511 1.511 1.412 1.269 
Mgrid 1.218 1.218 1.210 1.218 
Applu 1.337 1.337 1.345 1.278 
Mesa 1.786 1.786 1.580 1.786 
Art 0.399 0.400 0.332 0.243 
Equake 1.724 1.723 1.522 1.312 
IntAvg 1.337 1.327 1.263 1.118 
FPAvg 1.455 1.455 1.332 1.331 
Average 1.368 1.363 1.279 1.211 

 

 

Fig. 4. Layout of a CAM bitcell (left) vs. an SRAM bitcell (right) 
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CMOS layouts of both the 32-entry traditional queue and the 16-entry packing 
queue show a 26.7% reduction in the issue queue area due to the use of instruction 
packing. Packing effectively reduces the number of CAM bitcells by half, while 
increasing the number of SRAM bitcells in each row (but leaving the total number of 
SRAM bitcells in the IQ practically unchanged). Figure 4 presents the layouts of a 
CAM bitcell (left) and an SRAM bitcell (right).  

As presented in Table 3, instruction packing achieves a 21.6% reduction in the 
wakeup delay (when a 32-entry IQ is packed into a 16-entry IQ). This delay reduction 
comes mainly from the shorter and lower-capacitance tag busses. 

Table 3. Delays of a 16-entry queue supporting instruction packing compared to a 32-entry 
traditional queue 

Tag-Bus 
Drive (ps) 

Comparator 
Output (ps) 

Final Match 
Signal (ps) 

Total
Delay (ps) 

32-entry 224 219 126 569 
16-entry Packing 131 201 114 446 
Savings: 41.5% 8.2% 9.5% 21.6% 

Finally, the instruction packing saves energy due to the presence of half as many 
tag comparators and shorter tag-busses. SPICE simulations show the 16-entry packing 
queue saves 37.99% of total wakeup power as compared to a traditional 32-entry 
queue, most of it coming from the savings in the tag bus drive energy (we present the 
detailed per-benchmark results in Figure 6, Section 5.3). 

5.2   Tag Memoization 

Tag memoization does not impact IPC because it does not interrupt, hinder, or change 
the order of tag broadcasts in any way. The power savings of tag memoization comes 
from its ability to match the most significant bits of the tags on each bus from one 
broadcast to the next. Thus, it is important to consider how often these tag bits match. 
Figure 5 presents the number of most significant bits (MSBs), for each tag broadcast,  
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that match those of the previous tag broadcast on that bus. Since two bits match 43% 
of the time, we consider 2-bit matches for the remainder of this discussion. 

On a configuration with two separate intermediate latches, the two MSBs match an 
average of 48.1% of the time, while the next two MSBs match an average of 24.5% of 
the time. Accounting for the extra line that must be driven every time one of these 
latches must be reset, the total power savings from such a variation of tag 
memoization is 7.3% of total tag-broadcast power. This power savings can be 
improved by selectively arbitrating for tag busses so as to maximize tag matches. 
Such an “intelligent” tag bus assignment is able to achieve tag broadcast power 
savings by as much as 12.8%. 

5.3   Combining Instruction Packing with Tag Memoization 

Instruction packing and tag memoization are two orthogonal approaches to reducing 
the power consumption of instruction wakeup. Instruction packing aims to reduce the 
length of the tag-broadcast while tag memoization aims to reduce the number of tag 
busses driven. The 16-entry queue that supports instruction packing and uses 2 + 2 tag 
memoization (where we segment the 7-bit comparator into 3 segments – two higher 
order segments, each 2 bits wide, hence 2+2, and a 3-bit segment for the lower order 
bits) with judicious bus arbitration (where the bus for a tag broadcast is selected to 
maximize the likelihood of matches in the most significant bits) reduces the wakeup 
power by 44.74% as compared to a traditional 32-entry queue. If the random bus 
selection is used, then the power reduction is about 41%. The per-benchmark results, 
showing power savings of both schemes in isolation, as well as the combined power 
savings, are presented in Figure 6. In this figure, the tag memoization results are 
presented for the scheme where the tag buses are randomly allocated. As seen from 
Figure 6, the combined power savings from these two schemes is not additive. This is 
simply because instruction packing changes the relative position of a source register 
address over the tag busses, changing the pattern of tag matching, thus impacting the 
effectiveness of tag memoizatoin. (Higher power savings (not shown) are achieved in 
the combined scheme when intelligent tag bus assignment is used.) 
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6   Related Work 

Researchers have proposed several ways to reduce the power consumption of the 
issue logic. Dynamic adaptation techniques [22,23,24,25] partition the queue into 
multiple segments and deactivate some segments periodically, when the applications 
do not require the full issue queue to sustain the commit IPCs. Energy-efficient 
comparators, which dissipate energy predominantly on a tag match were proposed in 
[26,27]. Also in [26], the issue queue power was reduced by using zero-byte encoding 
and bitline segmentation. In [29], the associative broadcast is replaced with indexing 
to only enable a single instruction to wakeup. This exploits the observation that many 
instructions have only one consumer. 

The observation that many instructions are dispatched with at least one of their 
source operands ready is not new – it was used in [4], where the scheduler design with 
reduced number of comparators was proposed. In that scheme, some IQ entries have 
two comparators, others have just one comparator, and yet others have zero 
comparators. Despite significant reduction in the number of comparators, the size of 
the issue queue, and thus the length of the tag busses, was not reduced. In addition, 
the last-tag speculation mechanism introduced in [4] requires the extra logic to handle 
possible mispredictions. In [28], the tag buses were categorized into fast buses and 
slow buses, such that the tag broadcast on the slow bus takes one additional cycle. 
The design again relied on the last-arriving operand prediction to hook the last 
arriving operand (which actually identifies when the instruction wakes up) to the fast 
bus to avoid the wakeup delays. 

One approach to reducing scheduling complexity involves pipelining the 
scheduling logic into separate wakeup and select cycles [2,8]. It is shown in both [2] 
and [8] that naively pipelining the scheduling logic doesn’t provide for the back-to-
back execution of dependent instructions and thus significantly degrades 
performance. To overcome this, [2] uses the status of an instruction’s grandparents to 
wakeup the instruction earlier in a speculative manner. Kim and Lipasti [8] proposed 
grouping of two (or more) dependent single-cycle operations into so-called Macro-OP 
(MOP), which represents an atomic scheduling entity with multi-cycle execution 
latency. A smaller issue queue can be used in this design, because the instructions 
forming the Macro-OP share the same issue queue entry. The concept of dataflow 
mini-graphs [21] is similar to Macro-Op scheduling in that groups of instructions are 
scheduled together. The order of instructions within the mini-graph are determined 
statically and the scheduler only considers “handles”, or groups of instructions, for 
scheduling. This relies on re-compilation of code to generate these “handles” in the 
binary.  

Other proposals have introduced new scheduling techniques with the goal of 
designing scalable dynamic schedulers to support a very large number of in-flight 
instructions [5, 6, 9, 14, 20]. Brown et.al. [7] proposed to remove the selection logic 
from the critical path by exploiting the fact that the number of ready instructions in a 
given cycle is typically smaller than the processor’s issue width.  

Scheduling techniques based on predicting the issue cycle of an instruction [10, 
11,12,13,15,16,18] remove the wakeup delay from the critical path and remove the 
CAM logic from instruction wakeup, but need to keep track of the cycle when each 
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physical register will become ready. In [17], the wakeup time prediction occurs in 
parallel with the instruction fetching. 

7   Concluding Remarks 

We proposed two orthogonal schemes to reduce the power consumption of the 
wakeup logic. Instruction packing combines two instructions within the same issue 
queue entry if both instructions have at most one non-ready source operand at the 
time of dispatch. Consequently, the number of issue queue entries, and thus the length 
of and the capacitive loading on the tag busses, can be reduced substantially, leading 
to faster access and lower power dissipation. In addition, the layout area of the issue 
queue is also reduced. Tag memoization avoids driving the portion of the tag if it did 
not change from what was previously driven on the same tag bus. Combined, the two 
techniques result in about 45% reduction in the wakeup power. Additionally, 
instruction packing also achieves 26% reduction in the issue queue layout area and 
21% reduction in the wakeup delay. The delay of the selection logic increases only 
slightly - by the delay of a single multiplexer (with the pre-set control signal). Thus, 
significant overall reduction in the scheduler delay, and thus higher frequency, can be 
also realized. 
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Abstract. In the recent years, both power and performance have be-
come important in the design of microprocessors. In this paper, we in-
vestigate exploiting the small-sized data values for energy-efficient high
performance microprocessors. For this purpose, we bit-slice the execution
core (which includes the functional units, register files, data caches, and
forwarding logic), so that small portions of the data are operated upon
in different bit-slices. The bit-slices operating upon the higher order bits
are activated only if required, saving significant energy consumption. We
also investigate further advantages facilitated by bit-slicing such as en-
ergy savings obtained by reducing the number of ports provided in the
higher order bit-slices and by “shutting off” bit-slices to reduce leakage
energy consumption. We found that a significant energy saving can be
obtained in the register file (about 20%) and the Level-1 Data Cache
(about 30%) with a negligible loss of only about 2% in the instruction
throughput. Our studies also showed almost 20% savings in the register
file leakage energy consumption, when the unwanted higher order bit-
slices are “turned off”. Bit-slicing also helps in reducing the latency of
the different hardware structures, which can facilitate clock speed im-
provements.

1 Introduction

Energy consumption has emerged as an important criteria in the design of micro-
processors [8]. The major contributor to the overall energy consumption in a chip
is the dynamic energy consumption. However, the leakage energy consumption
is also on the rise [6], and has started to become a concern in the microprocessor
designs. Dynamic energy consumption results from the activity in a processor
and is caused by the charging and discharging of the capacitive loads in the pro-
cessor. Leakage energy consumption, on the other hand, is the result of shrinking
transistor sizes which leads to increased sub-threshold current.

One important approach towards reducing the energy consumption in a pro-
cessor, while not hurting the performance, is to limit the amount of unnecessary
work performed by the processor. Clock gating [2] is a good example of this
approach, where the hardware that does not need to be activated during an
operation is not provided with the clock signal. The architecture presented in
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this paper is in the same spirit, i. e. limit the amount of unnecessary work per-
formed by the processor. For this, we exploit the small-sized data values. Studies
[1][2][11] have shown that a significant number of data values of small size and
have a large number of leading zeros. In this paper, we bit-slice the processor
datapath. In the bit-sliced architecture, a particular bit-slice operates only on
certain data bits, and other bit-slices operate on other data bits. In this archi-
tecture, operations in the higher end bit-slices are performed only if required,
thus reducing the unnecessary work and saving energy. Even though there are
many techniques in the literature that exploit the narrow-width data property
to various effects, bit-sliced datapath has only been proposed to a limited extent
in [4], and not to the extent to which we bit-slice the execution core datapath.
Bit-slicing the datapath also has the potential of improving the clock speed by
reducing the access latencies of each of the bit-sliced hardwares. We experiment
with a 32-bit RISC architecture, however, the benefits of bit-slicing are expected
to increase as the processors use wider data sizes (64-bit processors and be-
yond). To motivate the approach, we present the sizes of the data values in the
processor.

1.1 Data-Sizes

We measure the operand sizes for the integer instructions operating on the in-
teger data values. For the measurements, we separate the integer instructions
into simple (such as Add, Subtract, etc.), complex (such as Multiply, Divide,
and Shifts), and load/store instructions. Figures 1(i), 1(ii), and 1(iii) give the
percentage of simple, complex, and load/store instructions, respectively, that
have either one or both operands of size greater than 8, 16, and 24 bits for a
32-bit RISC architecture. The legend for these graphs is given in Figure 1(iii).
Operands of sizes greater than 24 bits also include the negative values. Note
that, in the figures, the instructions that have at least 1 operand less than or
equal to 8 bits (in the second bar) can have the other operand of a larger size.
For the load and store instructions, we also measure the size of the values loaded
from and store into the data cache, shown in Figure 1(iv).

Figure 1(i) shows that there are about 60% of simple instructions that have
at least 1 operand that is greater than 16 bits (i.e. about 40% of the simple
instructions have both the operands less than or equal to 16 bits). When both
the operands are considered, there are only about 10% of the simple instructions
that have both the operands greater than 16 bits, suggesting that, an instruction
rarely operates on the higher order bits (there may be a few cases with a carry
generated by the lower bits). When considering the complex instructions, in
Figure 1(ii), there are considerably fewer instructions (about 30% on an average)
that have at least one operand greater than 16 bits in size. For the complex
instructions as well, there are only about 10% of instructions that have both their
operands of size greater than 16 bits. The load and store instructions are different
and they always have one operand (among the operands used for effective address
calculation) that requires almost 32 bits for representation. Considering the size
of the values that are loaded from the data cache and stored into the data cache,
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Fig. 1. Operand Sizes of Integer Instructions for (i) Simple; (ii) Complex; (iii)
Load/Store Instructions (1st Bar is for One Operand and 2nd Bar is for Both the
Operands); and (iv) Sizes of Loaded and Stored Values

there are only about 50% of the values that have a size that is greater than 16
bits (these include the negative values as well). The percentage of wider values
loaded from the cache and stored into the cache is relatively higher for the FP
benchmarks (applu, art, ammp, mesa, mgrid, swim, and wupwise), because they
load and store floating point values that typically use the entire 32 (64 bits for
double precision) for representation.

Figure 1 suggests that significantly small number of operations are performed
on the upper bits of operands, and motivate a bit-sliced architecture, where the
higher order bits are operated upon only when required.

1.2 Related Work

There has been some past work that uses the data widths of the values (gen-
erated in a program) to various effects. The SIMD paradigm takes advantage
of the narrow width operands to improve the performance of the multimedia
applications [10][13]. The Dynamic Zero Compression (DZC) cache [18] reduces
cache energy by exploiting the small-width property of values stored in the data
cache, by using a single bit to indicate that a full byte is zero.

Brooks [2] and Gabriel [11] use the small-width operand sizes to dynamically
pack different small-width data values and perform simultaneous operations on
them in order to improve performance, and reduce power consumption. Canal
et. al. [4][5] proposed two approaches to exploit narrow-width operands. In [4],
they considered a byte-serial (8-bit) or a semi-parallel (16-bit) pipeline to exploit
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the narrow-width data at the architectural level. The idea is to append extension
bits to data residing in the caches and registers to reflect the significant part of
the data, and only load, store, or compute on the useful bytes, thus reducing
switching activities. However, the limited datapath width provided can lead
to significant performance loss when processing operands of a larger bitwidth
(32 bits or more). In [5], the authors rely on profiling information used along
with static value range propagation analysis to discover useful range of operand-
width, and re-encoding operands with narrower opcodes. Compiler-level efforts
to exploit the narrow operand widths have been proposed in [12][16][14].

To the best of our knowledge, no one has yet investigated the performance
of a bit-sliced execution core to exploit the narrow-width properties of operands
to the extent that is being performed in this paper.

1.3 Contributions of This Work

The main focus of this paper is to study the performance of a bit-sliced datap-
ath in terms of its impact on the instruction throughput and the energy savings
for a high performance processor. Our studies showed that about 20% and 30%
dynamic energy savings can be obtained in the register file and the data cache
(by bit-slicing them), respectively, for a 2-way bit-sliced datapath. However, the
reduction in the instruction throughput is only about 2%, compared to a non-
bit-sliced datapath. We also investigate the reasons for IPC loss in a bit-sliced
datapath and recover some of the lost IPC using performance enhancement tech-
niques such as early resolution of branches. We also investigate how bit-slicing
can facilitate further reduction in energy consumption. For this, we propose re-
ducing the number of ports in the higher order bit-slices of the storage elements
such as the register file and the data cache. To reduce the leakage energy con-
sumption, we propose “shutting off” parts of higher order bit-slices that do not
store significant data. With these energy reduction techniques, the overall dy-
namic energy consumption can be reduced by about 25% in the register files and
about 32% in the data cache, and the register file leakage energy consumption
can be reduced by about 20%.

The rest of the paper is organized as follows. Section 2 presents the bit-
sliced execution core architecture and its impact on performance and energy
consumption. Section 3 presents and discusses both the IPC and the energy
consumption results. Section 4 proposes selective delays technique to recover
some of the IPC loss incurred. Section 5 presents techniques to further reduce
the dynamic and static energy consumption. We conclude in Section 6.

2 Bit-Sliced Execution Core Datapath

2.1 Basic Architecture

In a bit-sliced execution core, each wide integer ALU is partitioned into smaller
width ALUs, the integer register file is partitioned into multiple smaller width
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register files, and even the data cache is partitioned into multiple smaller width
data caches. For instance, for a 32-bit word machine, each 32-bit ALU can be
partitioned into 2 16-bit ALUs, the integer register file can be partitioned into
2 banks, each of size 16 bits, and the data cache can be partitioned into 2 data
caches, where each bank stores 16 bits of a word. We call each such partitioned
hardware module as a bit-slice. In the bit-sliced datapath, the lowest bit-slice
only operates on the lowest bits of the operands, and the next higher bit-slice
operates on the next higher bits, and so on. A 2-way bit-sliced execution core
datapath (for 2 ALUs and 1 data cache port) is shown in Figure 2, where the
ALUs, the register file, the bypass network, and the L1 data cache are all bit-
sliced into 2 parts.
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Fig. 2. Schematic 2-way Bit-Sliced Execution Core Datapath

As can be seen in Figure 2, ALU01 and ALU11 can only access RF1, and
ALU02 and ALU12 can only access the RF2, and data loaded from DC1 is by-
passed only to ALU01 and ALU11 and loaded only into RF1, and data loaded
from DC2 is bypassed only to ALU02 and ALU12 and loaded only into RF2.
The datapath for the stores is also similar. However, load and store instructions
that need to load and store a single byte or a single half word, may lead to a
transaction between RF1 and DC2, because the byte or the half word that is
being accessed in the data cache may be present in DC2. Hence, the values from
DC2 also need to be forwarded to the lower-bit ALUs and RF1, and vice versa.
In our architecture, the transactions between the lower order bit slice and DC2
require an additional cycle. Since values to be stored in the cache are placed into
the write buffers, the write buffers can also be bit-sliced. In our design, for sim-
plicity, we assume that the multiplier functional unit, responsible for executing
complex instructions, is not bit-sliced, because of lower frequency of complex in-
structions and difficulties in bit-slicing some of the complex operations. Hence,
complex instructions wait till their entire operands are available, before they
start execution.

In the proposed architecture, the load and store instructions cannot issue
until their entire address has been computed. The advantage with the simple
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instructions executing on the ALUs was that the lower end bits of the operands
were available for the consumer instructions even if the producer instruction had
not finished execution on the upper bits. This advantage is not available for the
load instructions. For simplicity, in our initial design, we assume that the AGUs
wait till the entire operands are available before computing the effective address.
This may delay the issue of the load and store instructions. Later in Section 4,
we will see how this constraint is relaxed.

We do not bit-slice the Floating-Point (FP) subsystem1. However, when a
value is loaded from a bit-sliced data cache, the FP instructions that are de-
pendent on load instructions will have to wait additional cycles for their entire
operands to become available. Hence, a slightly higher performance impact can
be expected for the FP benchmarks. However, the simple ALU instructions de-
pendent on the load instructions do not need to wait, because they can start
executing on the lower bits when they become available and execute on the
higher bits in the following cycles as and when they become available.

The execution of an integer instruction in the bit-sliced datapath takes place
as follows. If an instruction is issued to the ALUs for execution, it starts exe-
cution on the lower end bits of the operands and operations on the higher end
bits are performed only if required. Hence, values are read from RF2, and the
result values are written into RF2 only when required. The complex instructions
start execution only when all the bits of the operands are available, and these
instructions write the values both in RF1 and RF2. The memory operations also
compute the effective address only when the entire operands are available (de-
laying the issue of the load and store instructions). Once, the effective address
is computed, first DC1 is accessed and then DC2 is accessed if required. When
loading or storing single bytes or half-words from DC2, nothing is done in the
DC1 access pipeline stage and in the next cycle DC2 is accessed.

2.2 Determining Requirement

In the previous section, we observed that the higher bit-slices of register file and
the data cache are accessed only when required. To determine if a register file
bit-slice needs to be read, we use an additional bit (called next read bit) for every
register entry. When values are written into the register files, the corresponding
bits are set. For instance, when a value is written into a register entry in RF2, the
next read bit corresponding to that register entry is set. When a register entry in
RF1 is read, the next read bit for that register entry is also read simultaneously,
and depending on the value of the bit, the entry in RF2 is either read or not.
RF1, storing the least significant bits, is always read. The next read bits are also
used during concatenation of the bit-sliced values, read from all the bit-sliced
register files, to form the entire operands for address computation and complex
instructions. A similar procedure is employed for reading the Level 1 data caches,
where a next read bit is employed for each word in the cache. However, the L1

1 In our processor architecture, there is separate integer subsystem and a floating-point
subsystem.
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data caches may also be written from the lower level data cache, and for the
technique to work efficiently, the next read bit for each word needs to be set
accordingly. For this purpose, when a cache block is loaded from a lower level
cache into the L1 cache, the higher end bits of all the words in the cache block
are checked simultaneously and the bits for the words in the cache block are
set accordingly. The next read bits are also used to write the correct values in
the lower level cache during writeback. The number of additional bits required
depends on the amount of bit-slicing done. For instance, for a 2-way bit-sliced
128-entry register file, the additional number of bits required is 128, which is
only about 3% additional bits, considering 32-bit registers.

To avoid additional decoding to access the bit-vector of next read bits and the
upper bit-slices, the decoded information from the decoder used for the lower
bit-slice can be used to drive all the bit-slices and the bit-vectors. This will
increase the fan-out from the decoder. However, the decoder delay is significantly
lower than the delay associated with reading the register file, and the additional
decoder delay can be easily absorbed in a pipelined register file access without
any impact on the cycle time. The slight increase in the decoder delay can also be
compensated by the reduction in the register file access time due to bit-slicing,
which we confirmed using a modified version of the cacti tool [15]. A similar
approach also works for the data caches.

3 Performance Results

3.1 Experimental Setup

We use the SimpleScalar simulator [3], simulating a 32-bit PISA architecture.
However, we modify the simulator so that it has a separate register file, issue
queue and rob, instead of a single RUU structure representing all of them. The
hardware features and default parameters that we use are given in Table 1.
For benchmarks, we use a collection of 7 SPEC2000 integer programs (gzip,
vpr, mcf, vortex, bzip2, twolf, and gcc), and 8 SPEC2000 FP benchmarks
(equake, applu, art, mgrid, mesa, ammp, apsi, and wupwise), using ref inputs.
The statistics are collected for 500M instructions after skipping the first 500M
instructions for the SPEC2000 benchmarks. We use a feature size of 0.18 μm for
energy and latency measurements.

3.2 IPC Results

Figure 3 shows the IPC results for a 2-way bit-sliced configuration, compared
to a non-bit-sliced configuration. Figure 3 shows that the IPC reduction with a
2-way bit-slicing is only about 5% (with a maximum of about 9% for gzip). As
discussed in Section 2.3, the main reasons for a performance loss are (i) delays
in the execution of load instructions, (ii) delays in the execution of complex
instructions, and (iii) increase in the branch misprediction penalty. To find out
the contribution of each of these parameters to the total performance loss, we
measure the IPCs of a 2-way bit-sliced configuration with (i) only the loads not
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Table 1. Default Parameters for the Non-bit-sliced Configuration

Parameter Value Parameter Value

Fetch/Commit Width 8 instructions Instr. Window Size 96 Int/ 64 FP

ROB Size 256 instructions Frontend Stages 9

Phy. Register File 96 Int/ 96 FP, Int. Functional units 3 ALU, 1 Mul/Div,
1-cycle acc. lat. 2 AGU

Issue Width 5 Int/ 3 FP FP Functional Units 3 ALU, 1 Mul/Div

Branch Predictor gshare 1K entries BTB Size 4096 entries, 4-way assoc.

L1 - I-cache 32K, direct-map, L1 - D-cache 32K, 4-way assoc.,
2 cycle latency 2 cycle latency

2 read/ write ports

Memory Latency 50 cycles first chunk L2 - cache unified 512K,
2 cycles/inter-chunk 8-way assoc., 6 cycles

Fig. 3. IPC of a 2-way Bit-sliced Compared to a Non-bit-sliced Configuration

delayed (but the complex and branch instructions delayed), (ii) only the branch
instructions not delayed, and (iii) only the complex instructions not delayed.

We found that delays in the load instructions have the most performance
impact, because only the mispredicted branches impact performance, and branch
misprediction rates are small for almost all the benchmarks. The percentage
of complex instructions is also usually small in the benchmarks, and hence the
performance impact of a delay in their execution is not significant. We also found
that the increase in IPC as the load instructions are not delayed is relatively more
for the integer benchmarks than the FP benchmarks. This is because, in FP
benchmarks, the loads that load floating-point values still delay the dependent
FP instructions, even if the address computation of the loads is not delayed.

We also used the cacti tool [15] to measure the access times of the 2-way
bit-sliced register file and the data cache, and found that the access time of the
data cache reduces by about 8% when going from a non-bit-sliced data cache to
a 2-way bit-sliced data cache. The access time for the register file, on the other
hand, reduced by a negligible amount, mainly because for a 32-bit 128-entry
register file, the access time is controlled by the delay in driving the bit-lines,
which does not reduce.
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3.3 Energy Results

We use the cacti tool [15] to perform the energy consumption measurements for
the register file and the data cache. In case of a bit-sliced cache, an access to the
lower bit-slice (DC1 in Figure 2) accesses both the tag array and the data array
simultaneously, and since by the time the higher order bit-slices are accessed,
the cache block containing the data is already known, the access to the higher
cache bit-slice (DC2 in Figure 2) occurs only to the cache block in which the
data is present. Hence, the energy consumed in the higher bit-slices of the data
cache is considerably less than that in the lowest bit-slice. Figure 4 shows the
percentage savings in the dynamic energy consumption for the register file and
the data cache.

bzip2 gcc gzip mcf twolf vortex vpr
equake ammp applu art mesa

mgrid swim
wupwise

0

10

20

30

40

50

Per
cen

tag
e E

ner
gy 

Sav
ing

s

Register File Dynamic Energy Savings
L1 Data Cache Dynamic Energy Savings

Fig. 4. Percentage Dynamic Energy Consumption Savings in Register File and Data
Cache wrt Non-bit-sliced Configuration

Figure 4 shows that there is about 20% energy savings in the register file
and about 30% savings in the data cache. From Figures 4 and 1(i) (we consider
simple instructions because they form the majority of integer instructions), it
can be seen that benchmarks that have a relatively higher percentage of instruc-
tions with operands of size greater than 16 bits have a relatively lower energy
savings in the register file. This is because, for such benchmarks, the higher or-
der register file bit-slice is also accessed frequently. For instance, consider the
benchmarks applu, art, and mesa. The percentage of instructions with larger
operands decreases from applu to art and from art to mesa. Correspondingly,
the register file energy savings increases from applu to art and from art to
mesa. In integer benchmarks as well, bzip2 has among the largest percentage of
instructions with wider operands, and among the lowest percentage savings in
energy consumption. Similar results are observed for the energy savings in the
data cache. However, the energy savings in the FP benchmarks was observed to
be less than that in the integer benchmarks, because of the wide floating-point
values loaded from and stored into the data cache, which will almost always
access the higher order bit-slices (as is evident from the high percentage of wide
values loaded and stored for FP benchmarks in Figure 1(iv)).



Bit-Sliced Datapath for Energy-Efficient High Performance Microprocessors 39

4 Selective Delays

The main reasons for the reduction in IPC with a bit-sliced architecture include
increase in branch misprediction penalty (due to a deeper pipeline) and delay
in the issue of load instructions. In this section, we investigate techniques to
recover the IPC loss due to these reasons. The basic idea is to prevent the delays
from occurring, and the technique is called selective delays. Load instructions
are delayed because they cannot be issued until the entire address is known.
However, the saving grace here is that most of the effective address computations
are typically performed on the lower end bits of the address and that the large
base address is usually read from the register file (because once the base address
is calculated it is repeatedly used with different offsets to load values from the
cache). In this scenario, the AGU is designed such that if the operands are being
read from the register files, all the bit-sliced register files are read simultaneously,
and the effective address is computed. In this case, the load and store instructions
do not get delayed. In case the large base address is being bypassed from the
functional units or the data cache, then the address generation unit (AGU) waits
till the entire operands are available. In this technique, the issue of instructions
dependent on load instructions may have to be controlled according to whether
the load instruction is reading the operand value from the register file or is
receiving the operand value from the forwarding path.

To limit the increase in the branch misprediction penalty, we observe that
the result of most of the branches is known after the computation in the first
bit-sliced ALU. For instance, for the branch if not equal, if the lower end bits
of the operands are different, then we know that that the branch evaluation is
true irrespective of what the higher end bits are. Based on this observation, we
propose that the results of the branch evaluations in the lower bit-slices of the
ALUs be used (in parallel to the evaluations in the higher ALU bit-slices, which
are activated if required) to detect branch misprediction and to start the recovery
process as early as possible. This can avoid the increase in branch misprediction
penalty for many of the mispredicted branches.

Figure 5 shows the IPCs when using the selective delays technique discussed
in this section, and compares the IPC to that of a non-bit-sliced configuration

Fig. 5. Performance (IPC) Using Selective Delays Technique
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and that of a bit-sliced configuration without selective delays. As can be seen
in Figure 5, the IPC improves by about 3% with the selective delays technique,
when compared to the baseline 2-way bit-sliced architecture.

5 Energy Reduction Techniques

5.1 Reducing Number of Ports

Limiting the number of register file ports has been proposed earlier by Tseng [17],
in which the authors partition the register file into multiple banks where each
bank contains certain registers and the number of ports in each bank is reduced.
However, here we reduce the number of ports to the higher order register file
bit-slices, because when bit-slicing the register file (RF) and the data cache
(DC), the higher order bit-slices are not used as frequently as the lower order
bit-slices. We propose that the number of read ports into the higher order RF
bit-slice be reduced by half, while keeping the write ports intact for simplicity
of the design. This results in a higher order FU bit-slice having only 1 read
port into the higher order RF bit-slice. A single read port into the higher order
RF bit-slice also works well for address generation units because they typically
read only 1 32-bit operand (the base address) from the register file. If any FU
requires to read two operands from the higher order RF bit-slice, the instruction
that requires 2 operands from the higher order RF bit-slice, reads one operand
in one cycle and then reads the other operand in the next cycle, using the same
port. In this technique, the dependent instructions that may get issued in the
immediately next cycle following the producer instruction, will also have to be
stalled for one cycle. For this, we add another bit (called phys-delayed) to the
next read bit-vector, that indicates whether the production of the higher bit-
slice of a physical register will be delayed by a cycle or not. When an instruction
issues, in parallel to reading the lower order RF bit-slice, it reads the next read
bits and the phys-delayed bits for all the operands. If the next read bits of both
of its operands is 1 or the phys-delayed bit of any of its operands is 1, it sets
the phys-delayed bit for its destination and starts executing on the lower bit-
slices of its operands (which are always available), and then it stalls for 1 cycle
before continuing the execution on the higher order bits. The phys-delayed bit for
each register needs to be reset 1 cycle after it has been set, to indicate that the
ensuing dependent instructions need not wait for the higher order bits of their
operands. Note that, if an instruction stalls in any bit-slice of an ALU, then no
instructions are issued to that particular ALU, to avoid overwriting the stalled
instruction with the new instruction. For the higher order data cache bit-slice,
on the other hand, instead of having 1 read and 1 write port, we have only 1
read/write port. In this case, if both a load and a store need to access the higher
order DC bit-slice, then the store is stalled and load is executed. Results are
discussed in Section 5.3.
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5.2 Reducing Leakage Energy Consumption

With reducing feature sizes, leakage energy consumption is becoming a signifi-
cant fraction of the total energy consumption in the processor, and techniques
have to be investigated to reduce the leakage energy consumption. To reduce
leakage energy consumption, we investigate “shutting off” (by using gated-Vdd
[6]) the higher bit-slices of the storage elements when they do not store bits
significant to the representation of the value. For instance, for a 128-entry 32-
bit 2-way bit-sliced register file, the top half of 64 registers could be shut down
and during that time, the processor will have 64 32-bit registers and 64 16-bit
registers. In this case, the rename logic can use size prediction (as discussed in
[11]) to rename the instructions to appropriate registers. This technique could
be applied to both the bit-sliced register file and the data caches. In this section,
we only study techniques to reduce the leakage energy consumption in the reg-
ister file. We explain the technique only for a 2-way bit-sliced register file with
each register of 32 bits, however, it can be easily extended for further bit-sliced
register files.

For a 2-way bit-sliced register file, two separate free register lists are main-
tained, one for the registers that have their top half “shut off” (16-bit registers)
and the other for the “whole” (32-bit) registers. The size of the result produced
by any result-producing instruction is predicted, and based on the prediction,
an appropriate register is allocated to the instruction at rename-time. For size
predictions, a last value predictor has been shown to work very accurately [11].
When using a last value predictor, the size prediction for an instruction can
also be stored as an additional bit along with the instruction in the instruction
cache, avoiding the use of additional tables. If no prediction can be made for an
instruction, it is predicted to produce a result of size 32 bits. If a free register
appropriate for the predicted size of the result is not available, then the other list
is checked for free registers, and the registers are accordingly “turned on” and
“turned off”. “Turning on” bit-slices of registers may even take multiple cycles,
and register renaming is stalled for those cycles. At the time of write-back, the
size of the result is checked, and the registers are again “turned on” and “turned
off” accordingly, which may again stall the pipeline for some cycles. The num-
ber of cycles the pipeline stalls depends on the number of cycles required to
“turn on” the registers. As discussed earlier, if the prediction of an instruction
is more than 16 bits, but it gets allocated a 16-bit register, then the “turn on”
for the register is started at the register allocation time itself. However, by the
time the instruction reaches the writeback stage, if the register is not yet com-
pletely on, the pipeline stalls for the remaining number of cycles. The stalling of
the pipeline when “turning on” the registers at writeback time can have much
more performance impact. The leakage energy consumption in the register file is
saved by “turning off” the bits that do not store significant data. As discussed
in [6], gated-Vdd SRAM cells (for turning off the bits) have a negligible effect
on the area and the access time of the cells. Results are discussed in the next
section.
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5.3 Results

First, we measured the size prediction accuracy, and found that it hovers around
the 90% mark for almost all the benchmarks. We also measured the distribution
of cycles in terms of the number of 16-bit registers present in those cycles. We
found that there are a considerable number of cycles that have more than 32
16-bit registers (out of a total of 96 registers). Some benchmarks (such as mesa
and mgrid) even showed a considerable number of cycles with more than 64
16-bit registers.

Figure 6 shows the percentage savings in dynamic energy consumption for
the register file and the data cache (with and without reduced ports) and the
percentage savings in the register file leakage energy consumption. Figure 6 shows
that about 5% additional energy savings are obtained in the register file when
the number of read ports are reduced by half in the higher order RF bit-slice.
The corresponding number for the data cache (when reducing 1 read/ 1 write
port to 1 read/write port) is about 2%. The additional savings in the data cache
is lower than that in the register file, because the higher order DC bit-slice as
it is consumes considerably less energy than the lower order DC bit-slice (only
the required cache block is accessed in the higher order bit-slice), and reduction
of ports does not give significant additional energy savings. Figure 6 also shows
about 20% savings in the register file leakage energy consumption. To measure
the leakage energy savings, we measure the average number of register bits that
are “shut off”, and multiply it to the leakage energy consumption for each bit
(estimated by means of Hotleakage [19]).

Fig. 6. Percentage Dynamic Register File and Data Cache Energy Saving (with and
without Reduced Ports), and Percentage Register File Leakage Energy Saving

Figure 7 shows the IPC values with a 2-way bit-sliced configuration using
reduced number of ports, and using the leakage reduction technique of “shutting
off” higher RF bit-slices (with 3 different “turn on” cycle requirements of 1, 5,
and 10 cycles), compared against the non-bit-sliced configuration and bit-sliced
configuration with all the ports. Figure 7 shows that, when reducing the number
of ports in the higher order RF and DC bit-slices (only read ports are halved for
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RF), the reduction in IPC is only about 1%, compared to the baseline 2-way bit-
sliced configuration with all the ports. When “shutting off” the upper bit-slices
of the registers, the IPC depends on the number of cycles taken to reactivate
the “shut down” registers. We assume that it takes a single cycle to shut down a
register2. Figure 7 shows only about 3% reduction in IPC, compared to the 2-way
bit-sliced configuration, when the register activation time is 1 cycle. However,
for activation time of 5 cycles, the reduction is about 7% and for activation time
of 10 cycles, the reduction is about 15%.

Fig. 7. Performance (IPC) of a 2-way Bit-sliced Configuration With Selective Delays;
With Reduced Ports; Without Reduced Ports; and With Register Shutting

6 Conclusions

Power and performance have become two very important design criteria in the
design of microprocessors. However, efforts to improve either power or perfor-
mance usually leads to a degradation of the other. One important approach
reduce power consumption while not hurting performance is to prevent the pro-
cessor from performing unnecessary work. The techniques presented in this paper
are in the same spirit, where the execution core has been bit-sliced to avoid un-
necessary work. Bit-slicing uses the property that a significant amount of data
in the processor is of small-size. Bit-slicing has been proposed before, but never
to the extent to which we bit-slice the execution core (which includes the func-
tional units, the register file, the upper level data cache, and the data forwarding
paths). In our bit-sliced execution core, each bit-slice operates on different bits of
data, and the higher order bit-slices are activated only when they are required,
thus reducing energy consumption. Our studies show that, on a 32-bit machine, a
2-way bit-sliced execution core reduces the energy consumption of key hardware
resources such as the register file and the data cache by about 20% and 30%,
respectively, whereas the instruction throughput, with the help of performance
improving techniques to prevent the instructions from getting delayed, reduces
by only about 2%.
2 Note that only a few registers can be shut down and activated in each cycle, thus

reducing the inductive noise that can result from mass shut downs and activations.
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Bit-slicing can also facilitates further reduction in the processor energy con-
sumption. We use bit-slicing to reduce the leakage energy consumption in the
register file. With reducing feature sizes, leakage energy consumption is a grow-
ing concern in the design of microprocessors. With a bit-sliced register file, we
propose “shutting off” the higher bit-slices of the registers storing small-sized val-
ues, thus reducing the leakage energy consumption in them. Our studies showed
that an average of about 40 registers (out of a total of 96) have their higher or-
der bit-slices “shut off” every cycle, and that this technique reduces the leakage
energy consumption in the register file by about 20%. We also propose reducing
the number of ports in the higher order bit-slices to further reduce the energy
consumption in the processor execution core.
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Abstract. Technology scaling trends and the limitations of packaging
and cooling have intensified the need for thermally efficient architectures
and architecture-level temperature management techniques. To combat
these trends, we evaluate the thermal efficiency of the microcore architec-
ture, a deeply decoupled processor core with larger structures factored
out as helper engines. We further investigate activity migration (core
swapping) as a means of controlling the thermal profile of the chip in
this study. Specifically, the microcore architecture presents an ideal plat-
form for core swapping thanks to helper engines that maintain the state
of each process in a shared fabric surrounding the cores. This results in
significantly reduced migration overhead, enabling seamless swapping of
cores. Our results show that our thermal mechanisms outperform tra-
ditional Dynamic Thermal Management (DTM) techniques by reducing
the performance hit caused by slowing/swapping of cores. Our experi-
mental results show that the microcore architecture has 86% fewer ther-
mally critical cycles compared to a conventional monolithic core.

1 Introduction and Motivation

Thermal characteristics of contemporary processors are creating significant chal-
lenges to microprocessor design. Various trends threaten to make things even
worse: the number of on-chip transistors is quickly approaching one billion, clock
frequencies are dramatically increasing, feature sizes are dropping to deep submi-
cron levels, and supply voltage reduction is expected to slow down as it approaches
noise margin barriers. As a result, power densities and on-chip temperatures are
expected to increase even faster for the next generation of processors.

Thermal issues have gained significant importance in the past few years.
Processor heating raises number of problems that threaten vital aspects of the
microprocessor design, such as proper functionality, reliability, cost, and perfor-
mance. Reliability of an electronic circuit is exponentially proportional to the
junction temperature. A 10◦C increase in temperature usually translates to ∼2X
difference in the lifespan of the device [16]. At higher operating temperatures
the microprocessor operates at relatively lower speeds [23].

B. Falsafi and T.N. Vijaykumar (Eds.): PACS 2004, LNCS 3471, pp. 46–60, 2005.
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Furthermore, temperatures are not constant across the chip. 30− 40◦C ther-
mal gradients are quite common, which causes potential timing and data er-
rors [2]. There is a non-linear relationship between cooling capabilities and the
cost of a cooling solution. The cost of cooling increases at a higher (almost
exponential) rate for higher temperatures [10].

In recent years, dynamic thermal management (DTM) [4, 8, 14, 25, 15] has
become an integral part of microprocessor design to adapt to increasing on-chip
temperatures. The disparity between the maximum possible power dissipation
and typical power dissipation has become more pronounced. This, along with
the exponential increase in cooling device costs, has created a new trend where
cooling systems are designed for the typical worst case power dissipation instead
of the maximum possible power dissipation. Therefore, dynamic thermal man-
agement has become essential to ensure that processor temperature does not
reach or exceed the maximum tolerable temperature.

Many power optimization techniques do not seem to address problems caused
by processor heating, as they are targeting relatively cooler parts of the chip, such
as caches. With the expected increases in power consumption and temperature,
there is no doubt that more DTM techniques specific to microprocessor designs
are needed.

DTM usually targets the removal of excessive heat from the processor af-
ter a certain temperature threshold is reached. Thermal management can cause
performance degradation, as a result of reduced clock frequency, voltage or tem-
porarily shutting down the entire chip. Therefore, thermal efficient architectures
with less overall heating are extremely desirable, as they do not require very
aggressive DTM.

In this paper we explore the thermal efficiency of the microcore architec-
ture [18]. The microcore architecture features a small, fast pipeline augmented
with helper engines [22]. All large structures are factored out of the microcore
and are relocated as helper engines, taking advantage of locality in the first level
structures. In this paper, we explore the use of swapping applications between
multiple microcores when a given core exceeds a thermal threshold. The helper
engines buffer state during core swaps and help reduce the overhead of swapping.
We compare this approach to current DTM techniques.

The rest of this paper is organized as follows. In Section 2 we discuss the
prior work, followed by an introduction of the architectures we investigate in
Section 3. Section 4 presents the methodology. We present the experimental
results in Section 5 and concluding remarks are in Section 6.

2 Related Work

The circuit design community has proposed a great deal of work on dynamic
power optimization techniques, which are also used as dynamic thermal man-
agement techniques in microprocessors in various forms. Such techniques include
dynamic voltage scaling (DVS) and dynamic frequency scaling (DFS). In this
section we will focus on the studies that are close to our own and specifically
target microprocessor power/thermal optimization.
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The Pentium 4 [12] incorporates a low cost, yet reliable, thermal management
system based on processor power modulation that has been commonly used
in mobile systems. It utilizes the existing stoplock, an architectural low-power
logic mechanism that halts the clock signal to the bulk of the processor [10].
Thermal management is automatically invoked whenever any of the thermal
sensors indicates that the die is hotter than a predetermined critical temperature.
The mechanism stays active until the die temperature drops below the critical
value. The clock signal is gated at certain intervals or permanently, depending
on the thermal and power management state.

Brooks and Martonosi introduced an adaptive thermal management system
through speculation control in [4]. They also compared commonly used DTM
techniques such as clock frequency scaling, voltage and frequency scaling, decode
throttling, speculation control and instruction cache toggling [8]. An energy-
management framework that combines energy efficiency and temperature man-
agement, DEETM, was presented by Huang et al. [25]. They propose several
power optimization techniques such as global clock gating, DVS, sub-banking,
filtered instruction cache. Although these studies provide valuable DTM tech-
niques with significant thermal alleviation, detailed resistance-capacitance ther-
mal models were not available at the time. As a result some of the overheating
blocks were not addressed.

Him, Daash and Cai introduced a dual pipeline processor, with a secondary
low-power pipeline in [15]. The power efficient single-issue, in-order pipeline only
gets activated, when the primary pipeline exceed a threshold temperature. When
the superscalar core overheats, it is flushed and the secondary pipeline is acti-
vated until the primary pipe cools down to a safe temperature. Register file, fetch
engine and the execution units are shared among the two pipelines. However, it is
important to note that this technique is mainly targeting mobile devices and ap-
plications that can tolerate low performance. There is a significant performance
penalty when the architecture transitions to the secondary pipeline.

In [11] Heo, Barr and Asanovic proposed an activity migration technique for
power density reduction. Activity migration reduces the temperature by moving
the computation between multiple replicated blocks. This thermal reduction
yields lowered leakage power values and can also be improved with a dynamic
voltage scaling technique to further reduce the power and temperature.

Heo et al. [11] analyze multiple configurations with some of the microproces-
sor units replicated or shared. The study concludes that the best configuration
has a shared Icache, Cache, rename table, and issue queue. Although, duplicated
microprocessor units reduce the on-chip temperatures, they argue that this is
dominated by the overhead due to activity migration.

HotSpot [14] provides an accurate thermal model and a corresponding soft-
ware implementation that enables more detailed and localized thermal analysis
of the microprocessor. It is based on the equivalent circuit of thermal resistance
and capacitances that model the microarchitectural blocks and other aspects
of the chip thermal package. Hotspot highlights the inaccuracy in estimating
the temperature based on the power density only. The software models can be
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integrated with the other cycle accurate power estimators such as WATTCH [5]
and Hotleakage [27], in order to provide a complete thermal and power analysis.
In [14] Skadron et al. also provide and analyze several DTM techniques such
as: temperature-tracking frequency scaling, localized toggling and computation
migration. We incorporate HotSpot models for an accurate RC thermal analysis
of the various architectures investigated in this study. We also make use of an
idealized version of dynamic frequency scaling as a comparison point for the our
core swapping approach.

3 Factored Architectures

Figure 1 illustrates a factored architecture as proposed in [18]. The main idea
behind factored architectures is to move a set of larger structures out of the reg-
ular processor core, resulting in a tiny core with only the necessary components
included.

While structures such as caches are fairly easy to factor, other structures
require more consideration. In [18], Shayesteh et al. looked at three different
types of factored structures, and their challenges:

– Hierarchical extensions: Caches and branch predictor (shown in light gray)
– Complete factorization: Value predictor and data prefetcher (shown in dark

gray)
– Hybrid factorization: Register file and ROB (shown with gray stripes)

In a typical factored design, the level one data and instruction caches are
moved out of the core processor pipeline and replaced with a smaller L0 cache.
The L0 extends the cache hierarchy, and therefore the L1 data cache is accessed
on an L0 miss.

Fig. 1. The factored μ-core architecture
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The architecture includes a stream buffer architecture [13] guided by a stride-
filtered markov predictor as proposed in [20]. The address predictors are moved
further away from the core pipeline in the microcore. There is also a hybrid value
predictor [24], predicting only load instructions. To factor the value predictor,
the predicted value is stored in the register allocated to the load instruction
we are predicting. If the predicted value and the actual value do not match, a
checker engine similar to the ARB [9] detects the misprediction and squashes
the mispredicted result and its dependents.

The factored architecture makes use of a basic block target buffer (BBTB) [26],
a branch address predictor that predicts an entire basic block each cycle. The
microcore design has a reduced size BBTB in the core pipeline and adds a second
level BBTB as done in [17]. Similarly the fetch target queue (FTQ) decouples
branch prediction from the instruction cache. On a first level BBTB miss, the
second level BBTB is probed and fetch stalls until a response is received from
the second level. If the second level misses, we guess a fixed fetch block size and
continue fetching until a misprediction is detected.

In the factored architecture, a multi-level register file is used similar to the one
proposed in [3]. The basic differences are that they model an inclusive register
file hierarchy where the second level register file (RF1) includes all the state
contained in the first level register file (RF0). On a branch misprediction, the
second level register file recovers the state of the first level register file. This is
a hybrid of complete factorization and hierarchical extension, as the register file
is extended with a second level structure, but the commit hardware and ROB
are completely factored, with only tag allocation in the ROB impacting the core
timing.

The results in [18] showed that the microcore architecture is able to reduce
total processor power dissipation by 20% on average, while it attains comparable
performance to a deeply pipelined monolithic design at the same clock frequency.
The inherent power efficiency of the microcore, makes it an attractive design for
temperature aware architectures. Figure 2 illustrates how different components
contribute to the overall power for monolithic and microcore architectures. Our
methodology and processor parameters are described in following sections.We
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use the microcore framework of Shayesteh et al. to make our contribution in the
analysis of the temperature efficiency and the examination of core swapping on
the microcore.

3.1 Core Swapping

Swapping between multiple cores has been proposed as a dynamic thermal man-
agement technique. Heo et al. [11] look at several architectural alternatives for
implementing activity migration and its overhead on processor performance. We
propose a dual pipeline version of the microcore architecture, with factored com-
ponents shared between the cores. Unlike [11], our core swaps are triggered by
thermal sensors. When one core exceeds a thermal threshold, the application
workload is swapped to the other core.

Core swapping can impact processor performance significantly. On a core
swap, we flush the pipeline similar to a branch misprediction. Register file state
is copied to the other core, and dirty cache blocks are written back to the level
one cache (the helper engine), which is shared between the cores. We assume
that copying register file state and writing back dirty blocks can be overlapped
with the startup cost of the new core.

The cold start effect of caches and predictors causes an even more severe
impact on the second core. These structures need to warm up and depending
on their size, there is an overhead involved. In a conventional monolithic ar-
chitecture, recovering from loss of data on relatively large in-core caches and
predictors can degrade performance significantly. The microcore architecture,
with less state in the core and more buffering between the cores, provides a very
tolerant framework for core swapping. We present this feature in Section 5 by
comparing the performance degradation of a monolithic core vs. a microcore in
the presence of core swapping.

microcore A

microcore B

HE HE HE

microcore A

microcore B

HE HE HE

microcore A

microcore B

HE HE HE

Microcore A
exceeds the 

thermal threshold.

The application is 
swapped to microcore B, 

but state is still buffered in 
the shared helper engines

Execution resumes
on microcore B.

Fig. 3. Core Swapping

4 Methodology

The simulator used in this study was derived from the SimpleScalar/Alpha 3.0
tool set [6], a suite of functional and timing simulation tools for the Alpha
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AXP ISA. The timing simulator executes only user-level instructions. Simulation
is execution-driven, including execution down any speculative path until the
detection of a fault, TLB miss, or branch misprediction. Our processor operates
at a 5.6 GHz clock frequency.

We used the SPEC2000 benchmark set for our experiments. Although the
results are gathered for all the benchmarks, we only show results for a randomly
selected subset of 6 integer and 6 floating point programs in the suite to conserve
space in this paper. Details for all benchmarks will be available as a technical re-
port (citation removed for blind review process). The programs were compiled on
a DEC Alpha AXP-21164 processor using the DEC C and C++ compilers under
OSF/1 V4.0 operating system using full compiler optimization (-O4 -ifo). We
simulate 100 Million instructions after fast-forwarding application-specif num-
ber of instructions as proposed by Sherwood et. al in [19]. All benchmarks were
simulated using the ref inputs.

4.1 Architectural Model

We have made significant modifications to SimpleScalar to model the various
speculative techniques and different configurations in this study. We have mod-
ified SimpleScalar to include a cycle accurate, execution driven model of micro-
core and monolithic architecture models.

Table 1. Simulation parameters for the monolithic and microcore architectures

Monolithic Microcore
Core L0 Helper Engines

Instruction Window 256 entry ROB 256 entry ROB
and Physical RF 256 entry RF1 128 entry RF0 256 entry RF1
BBTB 2048-entry 4-way set 256-entry 4-way set 2048-entry 4-way set

associative associative associative
L1 Data 64KB 4-way set associative, 8KB 4-way set associative, 16KB 64-way set associative,
Cache dual port with a 32 byte dual port with a 32 byte single port with a 32 byte

block size, 4 cycle latency block size, 3 cycle latency block size, 6 cycle latency
L1 Instruction 64KB 2-way set associative, 8KB 2-way set associative, 64KB 2-way set associative,
Cache single port with a 32 byte single port with a 32 byte single port with a 32 byte

block size, 4 cycle latency block size, 2 cycle latency block size, 5 cycle latency
Value Predictor 2K-entry stride none 2K-entry stride
(1 prediction per cycle) 8K-entry markov 8K-entry L2 markov
Address Predictor 2K-entry stride none 2K-entry stride
(1 prediction per cycle) 4K-entry markov 4K-entry markov
Stream Buffer 32-entry FA buffer none 32-entry FA buffer
Branch Misprediction 26 cycles 20 cycles
Core Width 8-way issue, 4-way decode, 4-way commit
Memory and 150 cycle memory latency, 512KB 4-way set associative unified (instruction and data)
L2 Cache cache with a 64 byte block size and 12 cycle latency
Functional Units 8 integer ALUs, 2 integer MULT/DIV, 2 FP ALU, 2 FP MULT/DIV, 2 load/store

Table 1 presents the simulation parameters for the monolithic and microcore
architectures we explore in this paper. Cache and register file access latencies
are extracted from Cacti [21] for a 70nm Technology at 5.6 GHz frequency.

Note that the difference in branch misprediction penalty is the extra latency
attributed to the larger branch predictor, register file and instruction cache in
the monolithic core.
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4.2 Power and Thermal Simulator

A complete analysis of the static and dynamic power consumption and resulting
temperature characteristics of different architectures is crucial to our study. Our
power/thermal simulator performs cycle-accurate analysis of investigated archi-
tectures based on the following recently developed power and thermal models.
We used process parameters for a 70nm process at 5.6GHz with 1V supply volt-
age, in order to have a better understanding of next generation submicron, low
supply voltage, aggressively clocked microprocessors.

We have incorporated Wattch [5] models for dynamic power analysis of the
microprocessor blocks. The experimental results we present are extracted with
the most aggressive conditional clocking strategy, where the dynamic power
scales linearly with access to the ports.

For submicron technologies, such as 70nm, leakage power constitutes a signif-
icant portion of the overall power. ITRS [1] predicts that leakage power is likely
to increase exponentially and make up 50% of the total power dissipation for the
next deep submicron processes. Hence, an accurate and reliable leakage power
analysis is a necessity. We adapted leakage models from Hotleakage [27] in our
power/thermal simulator. Hotleakage models are extended and improved ver-
sions of the well-known Butts and Sohi leakage equations [7]. The public version
of Hotleakage only provides a software implementation of the leakage models for
the data cache. We have extended and modified the tool significantly to accom-
modate other caches and cache-like structures in the microprocessor. We also
used leakage parameters from Hotleakage’s predetermined values specific to the
70nm process technology.

A detailed and accurate thermal analysis of the different architectures we
explore in this study is crucial. It has been shown by [14] that thermal metrics
based on power consumption or power density of individual blocks do not provide
accurate thermal estimation. We used Hotspot’s thermal resistance/capacitance
models and RC solvers for our analysis.

Dynamic and leakage power consumption for each microprocessor unit are
collected over a predetermined thermal sampling interval, as the temperatures
change over periods greater than every cycle. We experimented with various
sampling interval lengths, in order to explore the trade off between error rate
and computational overhead. Hotspot [14] proposes a 10K instruction sampling
interval for 180nm and 3.3GHz, our results showed similar error rates for 10K
sampling interval for 70nm and 5.6 GHz as well.

Our power/thermal simulator also incorporates the thermal runaway phe-
nomena enabled by Hotleakage and Hotspot models. Thermal runaway is caused
by the exponential dependency of leakage power on temperature: increased tem-
perature increases leakage power, increased leakage power causes even further
increase in temperature. The positive feedback loop between leakage power and
temperature is quite significant and can cause device failure.

Heo, Barr and Asanovic [11], argue that most heat is dissipated vertically on
the microprocessor chip, as the wafer thickness is much smaller than the chip
area. Therefore, they assume infinite lateral resistances, although it leads to the
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worst case temperature gradients. We follow their example, and tune HotSpot
to only consider the vertical component of temperature. Lateral modeling, while
possible with HotSpot, is unrealistic without a more accurate floorplan of the
various architectures we consider.

Hotspot also requires a floorplan and the areas of the individual blocks of the
microprocessor. We used area values based on our analysis with Cacti [21], along
with a floorplan generated according to the minimum wirelength constraints.
(Area values for the blocks are not presented in this version because of the page
limitations.)

4.3 Dynamic Thermal Management Techniques

We assume that the critical thermal threshold is 82◦C and the safety thermal
threshold is 79◦C for the 70nm technology process we are investigating according
to the ITRS [1] projections and results from [14].

We have incorporated an idealized version of dynamic frequency scaling for
the experimental analysis. Our DFS has two different frequency settings: 5.6GHz
for the normal operation and 4GHz for thermal relief, which gets activated as
soon as on-chip temperatures reach the 82◦C critical thermal threshold. Usually
there is a large latency (on the order of usecs) incurred every time the frequency is
adjusted, which results in significant performance penalties in dynamic frequency
scaling schemes. Skadron et al. [14] report 10usec for the non-idealized version
of DFS. In our dynamic frequency scaling implementation there is no overhead,
delay or penalty involved with changing the frequency of the processor.

Global clock gating is commonly used in many of todays microprocessors,
such as the Pentium 4 as discussed in Section 2. We implemented a similar
global clock gating mechanism for thermal analysis. The global clock signal is
shut down, whenever on-chip temperatures exceed the critical thermal threshold
of 82◦C. The processor resumes normal operation after the chip temperatures
cool down below the safety threshold of 79◦C.

Our thermally-triggered core swapping mechanism gets activated as soon
as a core reaches 82◦C. The runs with this architecture assume an extra core
(identical to the main core) that can be used to offload an application when one
core overheats. The computation is migrated to the cooler core until the active
core heats above the critical thermal threshold and another swap is required.
Thermally-triggered core swapping minimizes the swapping overhead relative to
approaches that swap at fixed intervals regardless of core temperature.

5 Experimental Results

In this section we evaluate the performance of the microcore architecture alone
and in the presence of different DTMs. In particular, we examine the ability
of the microcore to buffer state when core swapping, and compare this to a
conventional monolithic architecture.
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5.1 Thermal Characteristics of Microcore vs. Monolithic

Figure 4 compares the performance and thermal behavior of a conventional
monolithic core and the microcore architecture on some of the SPEC 2000 bench-
marks. The upper half of the figure shows performance in BIPS for different
benchmarks, and the lower half illustrates the heating behavior of the investi-
gated architectures. This latter component shows the percentage of cycles for
which at least one block exceeds the indicated temperatures: 75◦C, 79◦C, 82◦C
and 85◦C. Darker colors in the lower graphs indicate higher temperatures. The
rest of the figures in this section are similarly constructed.

For example, galgel sees comparable performance with either the microcore
or monolithic architecture, but the monolithic core sees a temperature greater
than 85◦C almost 97% of the time. The microcore only exceeds 85◦C around
18% of the time, and stays below 82◦C around 42% of the time.

Note that for many benchmarks, and particularly in monolithic architec-
tures, temperature frequently exceeds the thermal threshold, 82◦C. These re-
sults should be considered as an upper bound for performance that are not be
achievable without some form of thermal management. On-chip temperatures
for the microcore architecture are significantly lower than the monolithic core,
but it still retains good performance comparable to that of the monolithic core.
This can be attributed to the significantly smaller structures in the microcore
that are much more power efficient.

Our detailed thermal analysis considers all of the possible overheating blocks.
Although some of the hotspots were common among different benchmark, such
as the register file, load-store queue, etc, others varied across the different bench-
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marks and configurations. Even though the location of hotspots can provide a
level of insight, the thermal behavior of the architecture can also be captured by
the number of cycles that any of the blocks exceed a given thermal threshold.

The smaller structures of the microcore consume less power on each access
compared to larger blocks in the monolithic architecture. Moreover, the larger
helper engines are not accessed as frequently. Their inherent latency tolerance
provides opportunities for power optimization. The microcore architecture shows
performance comparable to the monolithic core, but with a 20% reduction in
power on average.

It is important to note that the ITRS projects a reduction in maximum per-
mitted junction temperatures for the future generations of process technologies.
The maximum tolerated junction temperatures are around 85◦C for 130nm and
even lower for smaller process technologies.

The inherent thermal efficiency of the microcore also enhances the effective
temperature reduction when used with DTM techniques. Next, we evaluate the
performance and thermal behavior of DTM techniques, including core swapping,
on the monolithic core and microcore.

5.2 Dynamic Thermal Management on Monolithic Architecture

Figure 5 shows core swapping results compared to no DTM, global clock gat-
ing, and an idealized version of dynamic frequency scaling on the monolithic
architecture. The upper section of the graph displays performance in BIPS, the
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lower part is dedicated to the thermal behavior of the same benchmark and
DTMs, similar to the previous figure. Darker shades in the lower part of the
figure indicate higher temperatures as well.

Core swapping results are shown in black bars (at the top part of the Fig-
ure), idealized dynamic frequency scaling in dark gray and global clock gating are
in light gray. White bars demonstrate results without thermal management of
any kind, no-DTM. As mentioned earlier in Section 1, performance degradation
is commonly experienced with dynamic thermal management techniques. The
degradation usually comes from various sources such as frequency decrease, volt-
age reduction, clock gating. Performance degradation might be quite significant
depending on the DTM technique.

As a result no-DTM has the best performance results in BIPS among all cases.
However, it is almost impossible to achieve comparable performance in reality
since it would require sustained operation at a temperature beyond the critical
thermal threshold, and a processor operating under such conditions would likely
have timing, data and reliability complications. Although global clock gating
seems to be more effective in reducing the temperature in most benchmarks
than DFS, it has a very significant performance penalty as a result of disabling
the global clock signal frequently.

Core swapping is extremely effective at thermal management, reducing the
temperature below 79◦C at least 80% of the time for all benchmarks and well
above 95% of the time for many benchmarks. On the monolithic core, some
applications are able to tolerate the performance impact of core swapping, but
there is a pronounced degradation for many benchmarks, like bzip2 and mgrid.

For the monolithic case, temperatures were still above the threshold for many
applications with DFS, such as bzip2, gap and mgrid. This may indicate that our
DFS strategy requires an even lower frequency to provide thermal relief to these
applications, but at an even greater cost to performance. Despite a 70% drop in
performance mgrid is still above 85◦C around 95% of the time with DFS. gap
operates in lower frequency mode almost 99% of the time in order to reduce the
temperature, yet it is still above the 85◦C temperature threshold 97% of the time.

5.3 Dynamic Thermal Management on Microcore

Figure 6 shows the behavior of the microcore with DTM techniques. We observe
significantly improved thermal behavior compared to the monolithic architecture
(Figure 5), and see less performance degradation from core swapping.

It is important to note that state buffering provided by the shared helper
engines minimizes the core swapping overhead in the microcore architecture.
Core swapping is always able to outperform the other DTMs on a microcore
architecture, in most cases coming close to the performance of the architecture
without any DTM. It has an equally dramatic impact on temperature in the
microcore architecture. Temperatures are lower than 82◦C with core swapping,
for all of the benchmarks. Even galgel, which spends over half its execution
time over 82◦C is able to reduce its temperature below 79◦C around 93% of the
time using core swapping, with only an 8% degradation in BIPS.
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Note that we have used an idealized DFS implementation (see Section 4). This
behavior can cause a significant performance degradation if frequency switching
is used often. Notice that the idealized DFS is given competitive advantage
against a core swapping approach with a realistic performance penalty. Despite
this, core swapping is still able to outperform DFS.

6 Summary

In this paper, we investigated the thermal behavior of the microcore architecture,
and examined the use of core swapping as a legitimate alternative to conventional
DTMs.

We demonstrated that the microcore architecture enables lower on-chip tem-
peratures compared with a conventional monolithic architecture. Factoring large,
power-hungry units out of the core limits the number of accesses to such blocks
and prevents them from heating as much. Our experiments show that the mi-
crocore reduces number of cycles over the critical thermal threshold by 86% on
average, even without any thermal management use.

Furthermore, we have proposed a thermally-triggered core swapping mecha-
nism as a dynamic thermal management technique. Microcores enable efficient
core swapping by buffering processor state in shared helper engines that reduce
startup costs when switching to a new core. Our experimental results indicate
that a microcore is able to attain comparable IPC to a monolithic core, but with
94% fewer cycles above the critical thermal threshold.
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The core swapping mechanism shows promising thermal reduction ability.
It does not suffer any cycles in thermal violation for any of the benchmarks
we examined. It also has favorable performance (as measured in BIPS) when
compared to other DTM techniques such as GCG and the idealized DFS.

Future microprocessor generations have great thermal challenges awaiting
them. Thermally efficient architectures and dynamic thermal management tech-
niques are both critical to overcoming these challenges. Architectures like the
microcore can help to achieve this without sacrificing performance.

References

1. In International Technology Roadmap for Semiconductors, 2003.
2. A. Ajami, K. Banerjee, M. Pedram, and L. van Ginneken. Analysis of non-uniform

temperature-dependent interconnect performance in high performance ics. In 41st
Design Automation Conference, pages 567–572, June 2001.

3. R. Balasubramonian, S. Dwarkadas, and D. Albonesi. Reducing the complexity
of the register file in dynamic superscalar processors. In Proceedings of the 34th
Annual International Symposium on Microarchitecture, December 2001.

4. D. Brooks and M. Martonosi. Adaptive thermal management for high-performance
microprocessors. In Workshop on Complexity Effective Design, June 2000.

5. D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework for architectural-
level power analysis and optimization. In 27th Annual International Symposium
on Computer Architecture, pages 83–94, June 2000.

6. D. C. Burger and T. M. Austin. The simplescalar tool set, version 2.0. Technical
Report CS-TR-97-1342, U. of Wisconsin, Madison, June 1997.

7. J.A. Butts and G.S. Sohi. A static power model for architects. In 27th Annual
International Symposium on Computer Architecture, pages 191–201, June 2000.

8. D.Brooks and M.Martonosi. Dynamic thermal management for high-performance
microprocessors. In International Symposium on High-Performance Computer Ar-
chitecture (HPCA-7), pages 171–182, January 2001.

9. M. Franklin and G. S. Sohi. Arb: A hardware mechanism for dynamic reordering
of memory references. IEEE Transactions on Computers, 46(5), May 1996.

10. S. Gunther, F. Binns, D. Carmean, and J. Hall. Managing the impact of increasing
microprocessor power consumption. In Intel Technology Journal Q1, 2001.

11. S. Heo, K. Barr, and K. Asanovic. Reducing power density through activity migra-
tion. In International Symposium on Low Power Electronics and Design, August
2003.

12. G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and P. Roussel.
The microarchitecture of the pentium 4 processor. Intel Technology Journal Q1,
2001.

13. N. Jouppi. Improving direct-mapped cache performance by the addition of a small
fully associative cache and prefetch buffers. In Proceedings of the 17th Annual
International Symposium on Computer Architecture, May 1990.

14. K.Skadron, M.Stan, W. Huang, S.Velusamy, K. Sankaranarayanan, and D. Tarjan.
Temperature-aware microarchitecture. In 30th Annual International Symposium
on Computer Architecture, pages 2–13, June 2003.

15. C-H. Lim, W. Daasch, and G.Cai. A thermal-aware superscalar microprocessor.
In International Symposium on Quality Electronic Design, pages 517–522, March
2002.



60 E. Kursun et al.

16. L.T.Yeh and R.Chu. Thermal management of microelectronic equipment. In Amer-
ican Society of Mechanical Engineers - ISBN:0791801683, 2001.

17. G. Reinman, T. Austin, and B. Calder. A scalable front-end architecture for fast
instruction delivery. In 26th Annual International Symposium on Computer Ar-
chitecture, May 1999.

18. A. Shayesteh, E. Kursun, S. Sair, T. Sherwood, and G. Reinman. An evaluation
of deeply decoupled cores. In University of California Los Angeles Tech Report
CS-2004-09, 2004.

19. T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically charac-
terizing large scale program behavior. In Proceedings of the 10th International
Conference on Architectural Support for Programming Languages and Operating
Systems, October 2002.

20. T. Sherwood, S. Sair, and B. Calder. Predictor-directed stream buffers. In 33rd
International Symposium on Microarchitecture, December 2000.

21. P. Shivakumar and Norman P. Jouppi. Cacti 3.0: An integrated cache timing,
power, and area model. In Technical Report, 2001.

22. J. E. Smith. Instruction-level distributed processing. IEEE Computer, 34(4):59–65,
April 2001.

23. R. Viswanath, V. Wakharkar, A. Wathe, and V.Lebonheur. Thermal performance
challenges from silicon to systems. In Intel Technology Journal Q3, 2000.

24. K. Wang and M. Franklin. Highly accurate data value prediction using hybrid
predictors. In 30th Annual International Symposium on Microarchitecture, pages
281–290, December 1997.

25. W.Huang, J.Renau, S-M.Yoo, and J. Torrellas. A framework for dynamic energy
effiency and temperature management. In 33rd International Symposium on Mi-
croarchitecture, pages 202–213, December 2000.

26. T. Yeh and Y. Patt. A comprehensive instruction fetch mechanism for a processor
supporting speculative execution. In Proceedings of the 25th Annual International
Symposium on Microarchitecture, pages 129–139, December 1992.

27. Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and M. Stan. Hotleakage:
A temperature-aware model of subthreshold and gate leakage for architects. In
University of Virginia Dept of Computer Science Tech Report CS-2003-05, March
2003.



Software–Hardware Cooperative Power Management
for Main Memory�

H. Huang1, K.G. Shin1, C. Lefurgy2, K. Rajamani2, T. Keller2,
E. Hensbergen2, and F. Rawson2

1 The University of Michigan, Ann Arbor, MI 48105, USA
{haih, kgshin}@eecs.umich.edu

2 IBM Austin Research Laboratory, Austin, TX 78758, USA
{lefurgy, karthick, tkeller, bergevan, frawson}@us.ibm.com

Abstract. Energy is becoming a critical resource to not only small battery-
powered devices but also large server systems, where high energy consumption
translates to excessive heat dissipation, which, in turn, increases cooling costs
and causes servers to become more prone to failure. Main memory is one of the
most energy-consuming components in many systems. In this paper, we propose
and evaluate a novel power management technique, in which the system soft-
ware provides the memory controller with a small amount of information about
the current state of the system, which is used by the memory controller to sig-
nificantly reduce power. Our technique enables the memory controller to more
intelligently react to the changing state in the system, and therefore, be able to
make more accurate and more aggressive power management decisions. The pro-
posed technique is evaluated against previously-implemented power management
techniques running synthetic, SPECjbb2000 [17] and various SPECcpu2000 [18]
benchmarks. Using SPEC benchmarks, we are able to show that the coopera-
tive technique consumes 14.2–17.3% less energy than the previously-proposed
hardware-only technique, 16.0–25.8% less than the software-only technique.

1 Introduction

This paper focuses on reducing power dissipated by the main memory system (consists
of DRAM). This is motivated by a continuous increase in the power budget allocated
to the memory. For example, as much as 40% of the system energy is consumed by
the memory system in a mid-range IBM eServer machine [11]. Power dissipated by the
DRAM is largely dependent on its capacity and bus frequency. Therefore, as applica-
tions become increasingly data-centric, for the performance of the system to continue to
scale, we would need more power to sustain a larger-capacity and higher-performance
memory system, which can easily dominate the total system energy budget.

The main contributions of this paper are summarized as follows.

– Design of a novel power management technique that enables the system software to
cooperate with the memory controller hardware by providing it with critical system-
state information which was previously unavailable at the hardware level. This
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allows the memory controller to more intelligently react to the changing state in
the system, and therefore, significantly improve the energy-performance efficiency
of main memory.

– Use of a full system simulator (Mambo [4]) and a systematic evaluation methodol-
ogy to accurately simulate the behavior of the proposed power management unit in
the memory controller and its performance and energy effects on the system. Us-
ing a modified 2.6.5 Linux kernel, it enables us to precisely identify problems and
benefits associated with the proposed cooperative management technique running
various types of workload.

– Evaluation of registered DRAM (server-grade), which has been mostly under-
explored in the past, but it is now becoming increasingly important as it is almost
always used in today’s server systems. Using registered DRAM, we demonstrate
that our cooperative technique can save 14.2–17.3% more energy than previously-
proposed hardware-only techniques, 16.0–25.8% more than software-only tech-
niques, and 71.6–75.8% more than no power management.

The rest of the paper is organized as follows. Section 2 provides background in-
formation on the current state of DRAM technology and various DRAM architectures.
Section 3 describes the detail in the proposed cooperative technique which consists of
(i) Power Aware Virtual Memory (PAVM) implemented in the OS, (ii) a thin power
management layer in the memory controller hardware, and (iii) a software-hardware
interface. Experimental setup and detailed evaluation are given in Section 4, demon-
strating a significant benefit in using this new approach in terms of energy and perfor-
mance. Section 5 discusses related work, and Section 6 highlights some future research
directions and finally concludes the paper.

2 Memory System Model

In this section, we discuss performance and energy implications when power is man-
aged for the main memory. Since 1980, the performance gap between the memory and
the processor has been widening continuously — DRAM speed has been only improv-
ing at an annual rate of 7% while processor speed has been improving at an annual
rate of 40% [19]. Furthermore, frequent interaction between memory and other sys-
tem I/O components makes it a crucial component in the overall performance of the
system. Unfortunately, power reduction is only possible when memory is operating at
lower performance states, and therefore, it is important to ensure that either this perfor-
mance degradation can be hidden or that the energy saved in the memory justifies the
performance degradation that it causes. In this paper, we mainly concentrate on DDR
as it is becoming the most-widely used memory type. Nevertheless, our technique is
architecture-independent and can be easily applied to other memory types.

2.1 Double-Data Rate DRAM Model

DDR memory is usually packaged as modules, or DIMMs, each of which usually con-
tains either 1, 2 or 4 ranks, which are commonly composed of 4, 8 or 16 number of
physical devices Each time a DIMM is accessed, 64 bits of data is read or written.
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Fig. 1. (a) Power dissipated in each power state and the delays to transition between these states
for a single 512-Mbit DDR device. (b) Power dissipation of a TI CDCVF857 PLL device (one
per DIMM) and a TI SN74SSTV32867 register.

Since each device, depending on design, can supply either 4, 8, or 16 bits at a time,
multiple devices are needed to act simultaneously to satisfy a 64-bit DIMM access, and
these devices constitute a rank. A rank is then divided into multiple banks (logical de-
vices, usually 4 or 8), each of which may be accessed individually, but cannot be power
managed separately. The smallest physical unit for which we can independently manage
power is a single rank.

DDR architecture has many power states defined and even more possible transi-
tions between them [15,10]. For simplicity of presentation, we only consider four of
these power states — Read/Write, Standby, Powerdown, and Self Refresh — listed in a
decreasing order of power dissipation. The power dissipation in each state and the tran-
sitional delays between them are shown in Figure 1(a). Note that the power numbers
shown here are for a single device. Therefore, to calculate the total power dissipated by
a rank, we need to multiply this power by the number of devices used per rank. For a
512MB registered DIMM consisting of 8 devices in a rank, the expected power draw
values are 4.2 W, 2.2 W, 1.2 W, and 0.167 W, respectively, for the four power states
considered here. The details of these power states are as follows:

– Read/Write: Dissipates the most power, and it is only briefly entered when a
read/write operation is in progress.

– Standby: When a rank is neither reading nor writing, Standby is the highest power
state, or the most-ready state, in which read and write operations can be initiated
immediately at the next clock edge.

– Powerdown: When this state is entered, the input clock signal is gated except for
the refresh signal. I/O buffers, sense amplifiers and row/column decoders are all
deactivated in this state.

– Self refresh: In addition to all the components on a DIMM that are deactivated in
Powerdown, the phase-lock loop (PLL) device and registers are also put to the low-
power state to maximize energy savings as the PLL and the registers (Figure 1(b))
can consume a significant portion of the total energy on each DIMM. However,
when exiting Self Refresh, a 1 μsec delay is needed to re-synchronize both the PLL
and the registers.1

1 Registered memory is almost always used in server systems to better meet timing needs and
provide higher data integrity, and the PLL and registers are critical components to take into
account when evaluating registered memory in terms of performance and energy.
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Fig. 2. Architectural overview of cooperative power management system

Due to having a large power differential between Standby and Powerdown / Self
Refresh, we want to minimize the time a rank stays in Standby and maximize the time
it spends in either Powerdown or Self Refresh. However, at the same time, we also want
to minimize performance degradation caused by accessing ranks that were previously
put to one of the low-power states. Therefore, determining which ranks to power down,
when to power down, and into which low-power state to transition are critically impor-
tant to both energy and performance. For the time-being, we refer to Standby as the
high-power state, and both Powerdown and Self Refresh as low-power states. We make
the distinction between these two low-power states in Section 4 and illustrate how to
best utilize each to maximize energy savings while minimizing performance impact.

3 Design

This section details the design of the cooperative power management technique. It be-
gins with a brief design overview in Section 3.1. Hardware and software-side control
mechanisms are described in Section 3.2 and Section 3.3, respectively.

3.1 Overview

Proposals to manage power in the memory system have traditionally operated solely in
the hardware domain [2,5] or in the software domain [6,9], but not in both. In our work,
we discovered that a small amount of cooperation between these two domains can lead
to a significant energy benefit. In the hardware-controlled power management approach,
memory traffic is monitored by the memory controller which permits implementation
of a very fine-grained and highly-adaptive control mechanism, which ideally can be
used to glean all possible energy-saving opportunities. However, the effectiveness of
this approach is usually limited by how well the hardware can predict future references
from the past access behavior. Accurate prediction is very difficult to accomplish at such
a low level, especially in a complex multitasking system, where the memory access
patterns constantly change due to interleaved execution of many different processes.
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Fig. 3. Architecture of a per-rank PMU implemented in the memory controller

Any incorrect prediction will translate into both performance and energy penalties. On
the other hand, in the software-controlled, or more precisely OS-controlled, approach,
system and process state information (e.g., which memory regions are used by which
process) can be easily tracked by the system software. This information then enables the
OS to avoid performance penalty when managing the power for the memory as it can
keep all ranks that may be used by the current running process in a high-power ready
state while having all other ranks in low-power states. However, system software alone
is not capable of achieving fine-grained power control, as the OS is not generally aware
of which ranks a process is accessing at run-time, or how actively it is accessing a rank,
or whether or not there are any memory access patterns that can be exploited. It only
knows about the active ranks of the running process. However, since some of the active
ranks are infrequently used, and due to its inability of exploiting such knowledge, many
energy-saving opportunities will be lost in using this software-only approach.

Based on this observation and our discovery of a complementary relationship be-
tween these two types of approaches, we propose a cooperative power management ap-
proach that exploits the unique features available in each domain that can be used to aid
the other. For example, fine-grained control mechanisms available in the hardware level
can be used to aid the system software to re-capture some of the missed energy-saving
opportunities described earlier. Conversely, the system software can export useful sys-
tem and process state information down to the memory controller, so that the observed
memory traffic can be better interpreted at the hardware level, thus allowing the hard-
ware to make more accurate power management decisions. Figure 2 depicts the system
architecture of this cooperative power management approach showing both the software
and hardware components. In the next section, we first describe the architecture of the
power management unit (PMU) in the memory controller. It is the hardware compo-
nent responsible for monitoring memory traffic and controlling power in the DRAM.
We then describe how to minimally modify this PMU so it can efficiently communicate
with the system software to gain information about the current state of the system, and
thus allowing it to more intelligently manage power. In Section 3.3, we describe what
system and process state information are useful to the PMU and how does the system
software convey this information to the PMU.

3.2 Context-Aware PMU

Memory-controller-based power management [2,7,8] has been previously proposed to
provide fine-grained monitoring and power control, which is usually performed by a
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separate power management unit (PMU) implemented within the memory controller.
This PMU is typically implemented as a set of simple logic devices that (i) monitor
main memory accesses, (ii) predict threshold values to determine when to power down,
and (iii) instruct the memory controller to perform power-down operations when certain
conditions are met.

A schematic diagram of a simple PMU is shown in Figure 3. It monitors memory
accesses by snooping the address lines and keeps track of the past access behavior in
an internal register file, where the number of registers is dependent on how accurate
we need the prediction logic to be. Based on the history, a threshold value is derived
to determine how much idle time should elapse before putting a rank into a low-power
state. When multiple energy-saving states are implemented, one can derive multiple
thresholds, each used to transition the rank to a different low-power state.

Fig. 4. Inter-arrival time observed on two different ranks (or nodes)

Separate monitor/predictor logic is often kept for each of the ranks so the PMU can
individually monitor memory accesses, keep history and control power state for each.
The reason for keeping a separate set of logics is because each rank may be accessed
very differently from all other ranks. To give an example, Figure 4 shows a histogram
(in log scale) of inter-arrival times (in log scale) between consecutive memory accesses
observed on two different ranks. It is apparent from this figure that the access char-
acteristics observed on these two ranks are very different. On rank 0, we can observe
that with most inter-arrival times being very short, nearly every memory access comes
within 1 msec after the previous one. On rank 1, however, there are many larger gaps
(indicated by a heavier-tailed distribution) between memory accesses, suggesting that
we have more energy-saving opportunities and also the fact that different thresholds
should be used on these two ranks to maximize energy savings on each. However, this
per-rank implementation in the PMU would require additional circuitry which not only
adds manufacturing costs but also additional energy costs. Later, we will show how to
use the process state information exported by the system software to reduce this addi-
tional cost.

Per-Process Power Management. In the previous section, we illustrated the mecha-
nism to monitor memory traffic and manage power on a per-rank basis. Now, to take
this concept a step further in enabling the controller to better interpret the monitored
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memory traffic, we further partition the observed per-rank memory traffic on a per-
process basis. The reason why this is important is that different processes can exhibit
vastly different memory access behaviors. Even for processes with similar access be-
haviors, how they access each individual rank can be quite different (Figure 5(a)) given
that the virtual-to-physical page mapping is controlled arbitrarily by the OS. So, if the
PMU has no understanding of processes, the observed per-rank memory traffic is es-
sentially “polluted” by all processes that access this rank in rapid successions (at a
10 msec or even an 1 msec quantum) as scheduled by the task scheduler. Therefore,
the PMU will likely make inefficient power management decisions based on this “av-
erage” access behavior observed from all the concurrent processes. We illustrate this
by an example shown in Figure 6. In this example (top portion of the graph), Process
1 rarely accesses rank 0, whereas Process 2 accesses this rank very frequently. If the
controller monitors the memory traffic on this rank without differentiating between the
two processes, it will conclude that this rank is accessed “moderately”, and thus, might
make less-than-optimal power management decisions. However, by making the mem-
ory controller context-aware (bottom portion of the graph), the PMU can easily detect
that Process 1(2) rarely(frequently) accesses this rank, and therefore, can select more
suitable thresholds depending on which process is currently executing. The problem,
however, is that unlike in the case of per-rank management, the memory controller is
totally oblivious to the concept of a process, which ironically strongly impacts how the
memory is being accessed and how it should be controlled.
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The improvement to make the PMU context-aware can actually be very easily aug-
mented with a small amount of hardware modifications in the PMU and some minor
changes to the system software. On the software side, in addition to saving the pro-
cessor context (i.e., CPU registers) onto the stack of the switched-out process at each
context switch, in parallel, we would also need to save the values of the history-keeping
registers used by the PMU as shown in Figure 5(b) (Ignore the PAVM line for now).
Subsequently, when this process is switched back at a later time, both the processor
context and the PMU context associated with this process are restored. The PMU con-
text saving/restoring operations can either be done synchronously by the processor, or
asynchronously by the PMU itself when the processor sends it a context-switching sig-
nal and gives it a physical memory region for saving/restoring the PMU context. On
the hardware side, only a simple I/O interface needs to be implemented for saving and
restoring the PMU context. Essentially, this allows the memory controller to more ef-
ficiently manage power for the main memory tailored to the memory access behavior
specific to each process because the PMU can now make power management decisions
solely based upon each process’s past memory access behavior.

3.3 Interactions with PAVM

Power Aware Virtual Memory (PAVM) was first proposed and implemented by Huang
et al. in [9]. It leverages OS-level information and can make very accurate power man-
agement decisions, thus only negligibly affecting performance when performing power
management. We discovered that the information collected by PAVM in the operating
system can be used by the PMU to make more accurate power management decisions
and to determine which monitor/predictor circuits in the PMU are unnecessary so it
can turn them off to further reduce power. The availability of a full-system simulator
enables us to find several problems with the original PAVM implementation. We found
that a small but a non-negligible number of memory accesses did not go to the active
ranks of the current running process. These were later found to be memory accesses
incurred by the kernel (i.e., through system call, interrupt, exception) while in user pro-
cess’s context. This was resolved by tagging all pages that are used only by the kernel
and aggregating them onto the first rank in the system and always keeping this rank in
the most-ready state to reduce performance impact. In our experiment, a single 64MB
memory rank seems to have more than enough capacity for such purpose.

As indicated in Section 3.2, even though only a small amount of modifications is
needed to implement the aforementioned energy-conserving mechanisms in the hard-
ware, but the additional hardware does not come for free — a small but a non-negligible
additional power is dissipated. To amortize this cost, PAVM can inform the PMU which
ranks are used by the running process so that the PMU can completely gate off all the
monitor/predictor circuits and history-keeping registers for those inactive ranks without
affecting the effectiveness of the power management mechanism. This information is
passed down from the PAVM control line shown in Figure 5(b).

Cooperations with PAVM also have certain performance benefits. So far, we have
only discussed policies and mechanisms to power down ranks but not to power them
up. As premature power-ups waste energy, we currently do not consider any power-up
heuristics in the hardware. Instead, we rely on a simple but accurate power-up mech-
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anism implemented in PAVM. Since many memory accesses occur immediately after
a context switch due to cold cache misses, if PAVM can instruct the memory con-
troller to power up the active ranks of the to-be-run process as early as possible, some
re-synchronization penalties can be avoided.

4 Evaluation

We now evaluate the effectiveness of the proposed cooperative HW–SW power man-
agement technique and compare it against some previously-proposed techniques. Sec-
tion 4.1 describes the simulation environment and the methodology that we have used
to collect and analyze results. Section 4.2 and Section 4.3 provide detailed simula-
tion results using synthetic and SPEC benchmarks (SPECjbb2000 and SPECcpu2000),
respectively.

4.1 Simulation Setup

To the best of our knowledge, the proposed PMU architecture is not available in any
commercial systems to date. Therefore, the best one can do is to use a machine simu-
lator; we choose to use Mambo [16] in this project. Mambo is a full-system simulator
for PowerPC R© machine architectures and is in active use by multiple research and de-
velopment efforts at IBM. It emulates both 32-bit and 64-bit PowerPC R© processors and
also supports various system architectures and components, including a multi-tiered
cache hierarchy, SLBs, TLBs, disks, Ethernet controllers, UART devices, etc. We used
a modified 2.6.5-rc3 Linux kernel, running on top of a Mambo simulated machine (pa-
rameterized as shown in Table 1) to run all our workloads.

To evaluate various power-management techniques, we first use Mambo to record
all the main memory traffic (i.e., filtered by the L1 and L2 caches) into a trace file,
and then feed it into a trace-driven main memory simulator to simulate various power-
management decisions that could have been made by the memory controller at runtime.
This memory simulator is written using CSIM [13] library, and it can simulate detailed
activities in memory devices, controllers, synchronous memory interfaces (SMIs) and
on various buses. Instantaneous power is calculated using the method described in [14].
We keep track of state information for each bank on a per-cycle basis, which gives us
power and performance information.

4.2 Synthetic Benchmark

We first use a synthetic benchmark consisting of two streaming processes. The first
process’s memory accesses all miss in the cache and go to the main memory, and the
second process’s all hit in the cache. This synthetic benchmark is not meant to be real-
istic, but through this simple example, we can illustrate the potential benefit in making
the memory controller context-aware. Furthermore, using this simple scenario, we can
also see more clearly what are the energy and performance implications in using vari-
ous power management techniques. In the following section, we evaluate and compare
these power management techniques with more realistic workloads — SPECjbb2000
and SPECcpu2000.



70 H. Huang et al.

 0

 1

 2

3

 4

 5

 6

 7

8

9

P
o

w
e

r 
(W

a
tt
)

Run Time (processor cycle)

No Power Management

(a1) (a2)

 0

 1

 2

3

 4

 5

 6

 7

8

9

P
o

w
e

r 
(W

a
tt

)

Run Time (processor cycle)

Immediate PowerDown

(b1) (b2)

 0

 1

 2

3

 4

 5

 6

 7

8

9

P
o
w

e
r 

(W
a
tt
)

Run Time (processor cycle)

Immediate SelfRefresh

(c1) (c2)

 0

 1

 2

3

 4

 5

 6

 7

8

9

P
o
w

e
r 

(W
a
tt
)

Run Time (processor cycle)

HW-only

(d1) (d2)

Fig. 7. The first column shows the instantaneous power for a zoomed-in period of the synthetic
workload under (a) no power management (b) Immediate Power Down (c) Immediate Self Re-
fresh (d) HW-only and (e) HW–SW techniques. The second column shows the breakdown of the
average power dissipated.
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Table 1. System parameters used in Mambo. All cache lines are 128 Bytes long.

Component Parameter

Processor 64-bit 1.6GHz PowerPC R©
DCache 64KB 2-way Set-Associative
ICache 32KB 4-way Set-Associative

L2-Cache 1.5MB 4-way Set-Associative
DTLB 512 entries 2-way Set-Associative
ITLB 512 entries 2-way Set-Associative

DERAT 128 entries 4-deep
IERAT 128 entries 4-deep
SLB 16 entries

Memory DDR-400 768MB (64Mbx8)

Linux Kernel 2.6.5-rc3 w/ PAVM patch

Power Management Techniques. The machine configuration used for this benchmark
is the same as that shown in Table 1, except that the memory capacity is reduced to a
single 64MB rank. The two streaming processes are scheduled in an interleaved-manner
by the Linux task scheduler. Without any power management, the instantaneous power
dissipated by the memory is shown in Figure 7(a1), where one can clearly see when
each process is scheduled. In Figure 7(a2), we break the average power dissipated for
this benchmark down to various components. Power used by activation, read, write
operations and data queues are due to DRAM devices doing useful work and cannot
be reduced by using power management. Here, we look for ways and opportunities to
reduce the idle power that is wasted when no work is done. Most of this idle power is
dissipated in the Precharge Standby mode, Active Standby mode, and by the PLL and
the registers.

First, we consider the simplest static hardware techniques, which try to put the rank
to either Power Down or Self Refresh mode immediately at the end of each memory re-
quest. We call them Immediate Power Down and Immediate Self Refresh, respectively,
and the results are shown in Figures 7(b1-b2) and Figures 7(c1-c2). As we can see,
power reduction opportunity arises when the low memory referencing process starts
to execute. Immediate Power Down (IPD) can significantly reduce power dissipated in
Standby mode, whereas Immediate Self Refresh (ISR) can achieve additional energy
benefit by also powering down the PLL and the registers, although at a severe perfor-
mance penalty. We will look at their performance implications in detail shortly.
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Table 2. Summary of the synthetic benchmark. All cycles are in unit of processor cycles.

Total Simulated Cycles 3,442,155,784 cycles
Number of Read 10,906,196

Number of Writes 11,055
No Power Immediate Immediate Self

HW-only HW–SW
Management Power Down Refresh

Energy Consumption 10.34 J 7.83 J 6.04 J 7.35 J 6.18 J
Average Power 6.01 W 4.55 W 3.51 W 4.27 W 3.59 W

Average Response Time 96.92 cycles 105.04 cycles 894.01 cycles 107.20 cycles 106.81 cycles
Delayed Accesses Due to PD 0 10,486,433 0 10,391,535 10,531,756
Delayed Accesses Due to SR 0 0 603,389 16,340 8,044

Next, Figure 7(d1) shows the results when power management decisions is dynam-
ically made by the hardware (e.g., PMU in the memory controller). We assume IPD is
implemented in the memory controller by default as it has a significant energy benefit
and with only a very small performance impact (shown later). The PMU keeps history
information on past accesses in its internal registers which are used to dynamically pre-
dict threshold values to determine after how long of an idle period before Self Refresh
mode should be entered. It uses a moving window size of 500 μsec, which is reason-
able because it can avoid over-compensation and provide good adaptability to realistic
workloads. However, the result shows that it only outperforms the IPD strategy by ap-
proximately 6% in power because when the hardware tries to make power management
decisions based on its observation on the past memory access behavior, it gets confused
when two processes with very different access behaviors are accessing the same rank
in an interleaved-manner. One can argue that if the window size is reduced to 100 μsec
or even 10 μsec, we can adapt more quickly. However, shrinking the window size is
a double-edged sword, having this better adaptability runs at a higher chance to over-
aggressively predict threshold values from observing transient behaviors at run-time.
Shrinking the window size can benefit this synthetic workload, but for realistic work-
loads, it can cause more harm than benefits. As we will show in the next section, mis-
takingly entering Self Refresh mode can be very expensive. Furthermore, as more and
more systems are switching to smaller scheduling quanta (e.g., from 10 msec to 1 msec
or even smaller) to increase responsiveness in the system, higher context switching rate
will make the hardware predictor’s job even more difficult.

Finally, in Figure 7(e1) we show that if the system software can inform the PMU in
the memory controller of which process is currently running, more aggressive and accu-
rate power management decisions can be made. The PMU used here is exactly the same
as that described above, but with additional capabilities to keep the past access history
specific to each process and to save/restore the history-keeping registers at each context
switch. In this figure, we can see that immediately after the low memory referencing
process starts to run, the PMU is able to instantaneously put the rank to Self Refresh,
thus saving more energy. Additionally, unlike in the case of the HW-only technique, the
cooperative technique will not be affected when the task scheduling quantum becomes
increasingly smaller over time.

Results. The effect on energy can be easily obtained in our simulator. Performance im-
plication is more difficult to quantify though, as it is limited by the trace-driven nature
of this study. From a memory trace, we can identify exactly which memory reference is
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delayed and by how long due to power management. However, the dependency infor-
mation among memory requests is not retained in a trace-based approach. Therefore,
there is no way for us to know whether a delayed memory transaction will also delay a
memory request that goes to an independent rank. To measure performance implication,
instead, we use the average response time (service time) for each memory reference.
This is shown in Table 2. In this table, we also summarized all other results for the
synthetic workload.

From this table, we can see that using IPD is clearly beneficial. Compared to no
power management, which has an average response time of 96.92 cycles per memory
reference and consumes 10.34 J, IPD has an average response time of 105.04 cycles
(+8.4%) and consumes only 7.83 J (-24.3%). A few percent increase in the average
response time is usually not a big problem for server-type workloads as most are typi-
cally bandwidth-limited. On the other hand, when using Immediate Self Refresh, even
though we can get an additional energy benefit (6.04 J, -41.6%), but it comes at a pro-
hibitively high average response time (894.01 cycles, +822.42%). Compared to these
static techniques, the dynamic ones perform much better. They consume almost as little
energy as ISR but without ISR’s hefty performance penalty, and they consume much
less energy than IPD but pays almost as little performance penalty as IPD. Among the
dynamic techniques, the HW–SW cooperative technique shows clear energy benefits
over the HW-only approach. Specifically, it consumes 15.9% less energy than HW-only
and also has a slightly better average response time. In Table 2, we also show the num-
ber of delayed requests due to exiting Power Down (PD) and Self Refresh (SR). Exiting
PD is only 1 memory clock cycle, whereas exiting SR is much more expensive — 200
memory clock cycles. One of the reasons why HW–SW consumes less energy and has
lower response time than the HW-only approach is that it can more accurately predict
threshold for entering Self Refresh, and this is apparent from observing that HW–SW
has far fewer number of delayed requests due to exiting from SR.

4.3 SPEC Benchmarks

One of the benchmarks we used in our evaluation is SPECjbb2000 [17]. It is imple-
mented as a Java program emulating a 3-tier server system with an emphasis on the
middle tier. The tiers simulate a typical business application, where users in Tier 1
generate inputs that result in the execution of business logic in the middle tier (Tier
2), which calls a database on the third tier. In a benchmark run, one can instantiate
multiple warehouses, each with a 3-tier system. Each warehouse executes as a sepa-
rate Java thread within the JVM, and is mapped to a different Linux process. However,
since all warehouses are essentially running the same type of workload and they all
share the same memory address space within the JVM, we will only observe a small
amount of variation in how memory is accessed between context switches among these
SPECjbb processes. In such systems, the benefit of using the HW–SW power manage-
ment technique is limited. However, in real server systems, where the processor time is
shared among multiple users and their applications, multiple server processes, and var-
ious daemon processes, we can expect memory access behavior to change constantly
when context switching between these processes at a fine granularity. To emulate such a
system, we decided to run a few SPECcpu2000 benchmarks with well known execution
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Table 3. Summary of low memory-intensive workload

No Power
IPD ISR

SW-only
HW-only HW–SW

Management (PAVM)

Energy Consumption 353.11 J 194.04 J 56.73 J 114.92 J 105.33 J 87.79 J
Average Power 53.24 W 29.81 W 8.71 W 17.65 W 16.18 W 13.48 W

Average Response Time 114.77 cycles 126.06 cycles 1121.73 cycles 128.74 cycles 128.96 cycles 130.47 cycles
Delayed Accesses Due to PD 0 6,790,058 0 5,871,024 6,771,680 5,863,568
Delayed Accesses Due to SR 0 0 2,704,257 1,155 10,111 4,925

Table 4. Summary of high memory-intensive workload

No Power
IPD ISR

SW-only
HW-only HW–SWManagement (PAVM)

Energy Consumption 390.18 J 225.21 J 105.31 J 130.25 J 129.40 J 111.11 J
Average Power 56.42 W 32.56 W 15.23 W 18.83 W 18.71 W 16.07 W

Average Response Time 134.08 cycles 144.11 cycles 909.73 cycles 144.45 cycles 145.94 cycles 148.64 cycles
Delayed Accesses Due to PD 0 20,688,949 0 16,242.587 20,641,111 16,228,517
Delayed Accesses Due to SR 0 0 4,944,750 476 17,357 5,999

behavior in parallel with the SPECjbb workload. We classified these workloads as either
“high memory-intensive” or “low memory-intensive”, based on L2 miss rates [3]. For
the low memory-intensive workload, we run SPECjbb having 8 warehouses in parallel
with 256.bzip2 and 186.crafty, and for the high memory-intensive workload, we run
SPECjbb in parallel with 181.mcf and 179.art. Reference input sets are used for these
SPECcpu2000 benchmarks.

Results. In Table 3 and Table 4, we total energy, average power and average response
time for the low memory-intensive and high memory-intensive workloads, respectively,
for various power management techniques. IPD is assumed to be implemented in the
memory controller to complement all other power management techniques (except for
ISR) that we will evaluate. Here, we compare five techniques against each other — IPD,
ISR, SW-only (PAVM), HW-only, and HW–SW.

First we look at the static techniques. IPD by itself uses much more power than
the other techniques, and it has only a slightly better average response time than SW-
only, HW-only, and HW–SW approaches, and therefore, is not useful by itself. ISR’s
prohibitively-high average responsive time makes it not practical to use either by it-
self. Dynamic techniques perform much better than these static techniques. Among
the three dynamic techniques, PAVM performs the worst, and HW–SW performs the
best in terms of power savings. For the low memory-intensive workload, HW–SW con-
sumes 16.7% less energy than HW-only, and 23.6% less energy than SW-only. It also
has a comparable average response time (130.47 cycles) to SW-only (128.74 cycles)
and HW-only (128.96 cycles). For the high memory-intensive workload, HW–SW con-
sumes 14.1% less energy than HW-only, and 14.7% less energy than SW-only, and it
has only a slightly higher response time (148.64 cycles) than both SW-only (144.45
cycles) and HW-only (145.94 cycles) approaches.
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5 Related Work

Recent research has demonstrated that a significant amount of energy can be saved
in computing systems by exploiting power management capabilities built into modern
hardware components. Among power management techniques for main memory, there
are two main types of approaches — hardware and software-controlled. Among the
hardware-controlled approaches, Lebeck et al. [2,7] studied the effects of various static
and dynamic memory controller policies to reduce power with extensive simulation in
a single-process environment. In another paper [8], they used stochastic Petri Nets to
explore more complex policies. Delaluz et al. took a similar approach in [5], where they
studied various flavors of threshold predictors and evaluated their energy implications.
The techniques proposed in this paper are orthogonal to the works described above and
can be used to improve the prediction accuracy in some of these previously-proposed
threshold prediction mechanisms. However, unlike these previous works, the techniques
proposed in this paper are specifically designed and optimized for a multitasking envi-
ronment, as are most of today’s systems. Furthermore, we have also taken into account
of various OS effects, which were shown to be also important in practice [9].

Among the software-controlled approaches, Delaluz et al.[6] demonstrated a simple
scheduler-based power management policy. Huang et al. [9] later implemented Power-
Aware Virtual Memory (PAVM) to improve upon this work. PAVM modifies the under-
lying physical page allocator to make it more energy-efficient by collaborating with the
virtual memory through a NUMA management layer so that the energy footprint of each
process is reduced. To cope with various dynamics in real systems, PAVM leverages
advanced techniques, such as library aggregation and page migration. Delaluz et al.[5]
have also proposed a compiler-directed approach, where power management decisions
are statically determined. Due to its static nature, this approach is not very appropriate
for most complex systems, but may be applicable in some embedded systems where
workloads are more deterministic.

There are advantages and disadvantages in the two types of approaches. The coop-
erative technique that we proposed in this paper offers the best features in both. With
minimal help from the system software, we are able to show that the PMU in the mem-
ory controller can more accurately monitor memory traffic and thus more efficiently
managing power. In other research contexts, using software and hardware collabora-
tion [1,12] has also been shown to be beneficial in terms of improving performance and
security, and providing new functionalities.

6 Conclusion

In this paper, we proposed a novel power management technique that makes use of co-
operation between the system software and the memory controller hardware. It is shown
to make a significant improvement in the accuracy of the PMU’s threshold prediction
logic. Using a full-system simulator, our HW–SW cooperative approach is shown to
consume 14.2–17.3% less energy than the HW-only technique and 16.0–25.8% less
energy than the SW-only technique. We used a uni-processor system to explore the fea-
sibility of using this technique and quantified its benefits. We are planning to extend this
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work to multi-processor systems, where a combination of running processes, instead of
a single running process, must be considered.

Furthermore, alternative to this software-assisted hardware power management
technique proposed here, we can also imagine scenarios where the hardware can also
provide feedback to the system software to create additional energy saving opportuni-
ties. For example, the hardware can inform the OS how “hot” each of the physical pages
are being accessed, and the OS can use this information to re-arrange memory pages
within each process’s address space. This allows us to either (1) run hot ranks hotter and
cold ranks colder to create more energy saving opportunities in the cold ranks, or (2)
balance power dissipation on each rank and remove hot spots. Additionally, we would
also like to explore direct cooperation between applications and the PMU. As applica-
tions themselves know more about their future memory access behavior than the OS,
such information can prove to be beneficial to the memory controller in its prediction
logic, and thus, can be used to further enhance the proposed power management system.
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Abstract. There has been intensive research on data prefetching focus-
ing on performance improvement, however, the energy aspect of prefetch-
ing is relatively unknown. Our experiments show that although software
prefetching tends to be more energy efficient, hardware prefetching out-
performs software prefetching on most of the applications in terms of
performance. This paper proposes several techniques to make hardware-
based data prefetching power-aware. Our proposed techniques include
three compiler-based approaches which make the prefetch predictor more
power efficient. The compiler identifies the pattern of memory accesses
in order to selectively apply different prefetching schemes depending on
predicted access patterns and to filter out unnecessary prefetches. We
also propose a hardware-based filtering technique to further reduce the
energy overhead due to prefetching in the L1 cache. Our experiments
show that the proposed techniques reduce the prefetching-related energy
overhead by close to 40% without reducing its performance benefits.

1 Introduction

In recent years, energy and power efficiency have become key design objectives
in microprocessors, in both embedded and general-purpose domains. Although
considerable research [18,3,16,17,6,13,10,11] has been focused on improving the
performance of prefetching mechanisms, the impact of prefetching techniques on
processor energy efficiency has not yet been fully investigated.

Our experiments [8] on five hardware-based data prefetching techniques show
that while aggressive prefetching techniques often help to improve performance,
in most of the applications, they increase memory system energy consumption
by as much as 30%. In many systems [7,12], this is equivalent to more than 15%
increase in chip-wide energy consumption.

We implemented two software prefetching techniques [14,11] to compare the
performance and energy efficiency of hardware and software prefetching. The
results show that in general software prefetching is more energy-efficient while
hardware prefetching yields better performance for most applications. In this
paper, we focus on making one of the hardware prefetching techniques (which

B. Falsafi and T.N. Vijaykumar (Eds.): PACS 2004, LNCS 3471, pp. 78–94, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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yields the best performance speedup) more energy-efficient without sacrificing
its performance benefits.

Aggressive hardware prefetching is beneficial in many applications as it helps
to hide memory-system related performance costs. By doing that, however, it
often significantly increases energy consumption in the memory system. The
memory system consumes a large fraction of the total chip-energy and it is
therefore a key area targeted for energy optimizations. Our experiments show
that most of the energy degradation is due to the prefetch-hardware related
energy costs and unnecessary L1 data-cache lookups related to prefetches that
hit in the L1 cache.

We propose several power-aware techniques for hardware data prefetching to
reduce the energy overheads stated above. The techniques include:

– A compiler-based prefetch filtering approach, which reduces energy consump-
tion by only searching the prefetch hardware tables for selective memory
instructions identified by the compiler;

– A compiler-assisted selective prefetching mechanism, which utilizes compiler
supplied static information to selectively apply different prefetching schemes
depending on predicted access patterns;

– A compiler-driven filtering technique using a runtime stride counter designed
to reduce prefetching energy consumption wasted on memory access patterns
with very small strides; and

– A hardware-based filtering technique applied to further reduce the L1 cache
related energy overhead due to prefetching.

The SimpleScalar [5] simulation tool has been modified to implement the
different prefetching techniques and collect statistics on performance as well as
switching activity in the memory system. The compiler passes for both software
prefetching and power-aware hardware prefetching are implemented using the
SUIF infrastructure [19]. To estimate power consumption in the memory sys-
tem, we use state-of-the-art low-power cache circuits and simulate them using
HSpice. Our experiments show that the proposed techniques successfully reduce
the prefetching-related energy overheads by 40% on average, without reducing
the performance benefits of prefetching.

The rest of this paper is organized as follows. Section 2 describes the en-
ergy overhead of data prefetching. The energy-aware prefetching solutions are
presented in Sec. 3. Section 4 presents the experimental assumptions. Section 5
gives a detailed analysis of the results. We conclude with Sec. 6.

2 Motivation

Our previous work [8] has evaluated the energy perspective of hardware-based
data prefetching techniques. In addition to the hardware techniques evaluated,
we also implemented two software prefetching techniques [14,11] and compare
their performance and energy consumptions to the hardware mechanisms. More
details and background on the this section can be found in [8].
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Fig. 1. Performance speedup for different prefetching schemes

To explore the energy aspects of data prefetching techniques, we provide
experimental results for the following five prefetching techniques:

– Stride prefetching [3] - Focuses on array-like structures, it catches constant
strides in memory accesses and prefetches using the stride information;

– Dependence-based prefetching [16] - Designed to prefetch on pointer-intensive
programs containing linked data structures where no constant strides can be
found;

– A combined stride and dependence-based approach - Focuses on general-
purpose programs, which often use both array and pointer structures, to
achieve benefits from both stride and pointer prefetching.

– Compiler-based prefetching similar to [14] - Use the compiler to insert pre-
fetch instructions for strided array accesses.

– Compiler-based prefetching on Linked Data Structures - Uses the greedy
approach in [11] to prefetch pointer structures.

The first three techniques are hardware-based and they require the help of one
or more hardware history tables to trigger prefetches. The last two are software-
based techniques which use compiler analysis to decide what addresses should
be prefetched and where in the program to insert the prefetch instructions.

The performance improvement of the five prefetching techniques is shown in
Fig. 1. The first five benchmarks are from SPEC2000 benchmarks; the last five
are Olden benchmarks which contains many pointers and linked data structures.

Aswe expected, stride prefetching does verywell onperformance for SPEC2000
benchmarks, averaging just over 25% speedup across the five applications studied.
In contrast, the dependence-based approach achieves an average speedup of 27%
on the five Olden benchmarks. The combined approach achieves the best perfor-
mance speedup among the three hardware techniques, averaging about 40%. In
general, the combined technique is the most effective approach for general-purpose
programs (which typically contain both array and pointer structures).

For the two software techniques, the compiler-based technique for strided
accesses achieves almost 60% speedup on art and about 40% on em3d, with an
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Fig. 2. Total cache energy consumption

average of 16% in performance speedup. The scheme for linked data structures
yields an average of 55%, but it does extremely well on perim(a speedup of 5.6x).
Without perim, the average speedup goes down to just 10%.

We calculated the total energy consumption in the memory system for each
prefetching technique based on HSpice; for more details, see Sec. 4. The results
are shown in Fig. 2. In the figure, we show the energy breakdown for (from
bottom to top for each bar) L1 dynamic energy, L1 leakage, L2 dynamic energy,
L2 leakage, L1 tag lookups due to prefetching, and prefetch hardware table
accesses for hardware prefetching or prefetch instruction overhead for software
prefetching.

The results in Fig. 2 show that the three hardware-based prefetching schemes
result in a significant energy consumption overhead, especially in the combined
prefetching approach. The average increase for the combined approach is more
than 28%, which is mainly due to the prefetch table accesses and the extra
L1 tag lookups due to prefetching. Software prefetching also increases energy
consumption for most of the benchmarks, especially in mcf and em3d. However,
compared to the combined hardware prefetching, software prefetching techniques
are more energy-efficient for most of the benchmarks.

Considering both performance and energy-efficiency, it seems that there is no
single prefetching solution which would yield the best performance and at the
same time consume the least energy consumption. Based on our observation,
the combined hardware-based technique outperforms others in terms of speedup
for most benchmarks although it consumes considerably more energy than the
other four techniques. The question is: can we make the combined hardware
prefetching more energy-efficient without sacrificing its performance benefits?

3 Energy-Aware Prefetching Techniques

In this section, we will discuss how to reduce the energy overhead for the most ag-
gressive hardware prefetching scheme, the combined stride and pointer prefetch-
ing. This scheme gives the best performance speedup for general-purpose pro-
grams, but it is the worst in terms of energy efficiency.
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3.1 Overview

Our experimental results show that most of the energy overhead due to prefetch-
ing comes from two areas. The major part is from the prefetching prediction phase:
when we search/update the prefetch history table to find potential prefetching op-
portunities; Another significant part of the energy overhead comes from the extra
L1 tag-lookups. This is because many unnecessary prefetches are issued by the
prefetch engine.

PFB

...... ... ... ... ... L1 D-cache

Stride
Prefetcher

Pointer
Prefetcher

Stride Counter

LDQ        RA           RB                OFF          Hints

Prefetches

Tag-array Data-array

Prefetch from L2 Cache

Regular
Cache Access

Filtered

Filtered

Filtered

Fig. 3. Power-aware prefetching architecture for general-purpose programs

Figure 3 shows the modified combined prefetching architecture including
four energy-saving components. The first three techniques are compiler-based
approaches used to reduce prefetch-table related costs and some extra L1 tag
lookups due to prefetching. The last one is a hardware-based approach designed
to reduce the extra L1 tag lookups. The techniques proposed, as numbered in
Fig. 3, are:

1. A compiler-based prefetch filtering approach which reduces prefetch hard-
ware energy cost by only searching the prefetch hardware tables for memory
instructions selected by the compiler;

2. A compiler-assisted selective prefetching mechanism which utilizes the com-
piler supplied static information to selectively apply different prefetching
schemes depending on predicted access patterns;

3. A compiler-driven filtering technique using a runtime stride counter, designed
to reduce prefetching attempts and energy consumption wasted on memory
access patterns with very small strides; and
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Fig. 4. Compiler analysis used for power-aware prefetching

4. A hardware-based filtering technique applied to further reduce the L1 cache-
related energy overhead due to prefetching.

The compiler-based approaches help make the prefetch predictor more se-
lective based on program information extracted. With the help of the compiler
hints, the energy-aware prefetch engine performs much fewer searches in the pre-
fetch hardware tables and issues fewer prefetches, which results in less energy
overhead being consumed in L1 cache tag-lookups.

Figure 4 shows the compiler passes in our approach. Prefetch analysis is the
process where we generate the prefetching hints, including whether or not we
will do prefetching, which prefetcher to choose, and the stride information. A
speculative pointer and stride analysis approach [9] is applied to help analyze the
programs and generate the information we need for prefetch analysis. Compiler-
assisted techniques require the modification of the instruction set architecture to
encode the prefetch hints generated by the compiler analysis. These hints could
be accommodated by reducing the number of offset bits. We will discuss how to
perform the analysis for each of the techniques in detail later.

In addition, our hardware-based filtering technique utilizes the temporal and
spatial locality of prefetching requests to filter out the requests trying to prefetch
the same cache line as prefetched recently. The technique is based on a small
hardware buffer called the Prefetch Filtering Buffer (PFB).

3.2 Compiler-Based Prefetch Filtering (CBPF)

One of our observations is that not all load instructions are useful for prefetching.
Some instructions, such as scalar memory accesses, have no access patterns and
cannot anyway trigger useful prefetches when fed into the prefetcher.

We use the compiler to distinguish memory accesses useful for prefetching
from those which my have no benefit. Only those useful load instructions, selected
by the compiler, are fed into the prefetcher. Instructions identified with ”no
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prefetching potential” will not be added to the prefetch history table. Thus,
these instructions will not contribute to the energy consumption overhead.

The compiler identifies the following memory accesses as having ”no prefetch-
ing potential”:

– Non-critical accesses : Memory accesses within a loop or a recursive function
are regarded as critical accesses. Because prefetching schemes are anyway de-
signed to capture the memory access patterns in critical program phases, we
can safely filter out the non-critical accesses before they reach the prefetcher.

– Scalar accesses : Scalar accesses do not have any pattern and will not con-
tribute to the prefetcher if fed into the prefetcher. Only memory accesses to
array structures and linked data structures will be sent to the prefetcher to
make prefetching decisions.

The instructions selected by the compiler are annotated with ”no prefetching
potential” and are filtered out before they are fed into the prefetcher. This
optimization could eliminate on average as much as 8% of all the prefetch table
accesses, as we will show later.

3.3 Compiler-Assisted Selective Prefetching (CASP)

Another compiler approach focuses on how to help the prefetch predictor to
choose one of the prefetching schemes in the combined prefetching approach.

One important aspect of the combined approach is that it uses two tech-
niques independently and prefetches based on the memory access patterns for
all memory accesses. As we know, stride prefetching works better on array-based
accesses and dependence-based prefetching is more appropriate for pointer-based
structures. One obvious approach is therefore to distinguish these two types of
accesses.

Distinguishing between pointers and non-pointer accesses is difficult during
execution time. However, we can distinguish them easily during compilation
passes. Array accesses and pointer accesses are annotated using hints written
into the instructions. During runtime, the prefetch engine can identify the hints
and apply different prefetching mechanisms.

We have found that simply splitting the array and pointer structures is not
very effective and affects the performance speedup (which is the primary goal of
prefetching techniques). Instead, we use the following heuristic to decide whether
we should use stride prefetching or pointer prefetching:

– Memory accesses to an array which does not belong to any larger structure
(e.g., fields in a C struct) are only fed into the stride prefetcher;

– Memory accesses to an array which belongs to a larger structure are fed into
both stride and pointer prefetchers;

– Memory accesses to a linked data structure with no arrays are only fed into
the pointer prefetcher;

– Memory accesses to a linked data structure that contains arrays are fed into
both prefetchers.
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The above heuristic is able to preserve the performance speedup benefits of
the aggressive prefetching scheme. We can filter out up to 20% of all the prefetch-
table accesses and up to 10% of the extra L1 tag lookups due to prefetching, by
applying this technique.

3.4 Compiler-Hinted Filtering Using a Runtime Stride Counter
(SC)

Another part of prefetching energy overhead comes from memory accesses with
small strides. Accesses with very small strides (compared to the cache line size
of 32 bytes we use) could result in frequent accesses to the prefetch table and
issuing more prefetch requests than needed. For example, if we have an iteration
on an array with a stride of 4 bytes, we will access the hardware table at least
8 times before we reach the point where we can issue a useful prefetch to get
a new cache line. The overhead not only comes from the extra prefetch table
accesses; 8 different prefetch requests are also issued to prefetch the same cache
line during the 8 iterations.

Software prefetching would be able to avoid the penalty by doing loop un-
rolling. In our approach, we use hardware to accomplish loop unrolling with
assistance from the compiler. The compiler predicts as many strides as possible
based on static information. Stride analysis is applied not only for array-based
memory accesses, but we also predict strides for pointer accesses with the help
of pointer analysis. Detailed information on how to do the pointer and stride
analysis could be found in [9].

Strides predicted as larger than half of the cache line size (16 bytes) will be
considered as large enough since they will be able to reach a different cache line
after each iteration. Strides smaller than the half of the cache line size will be
recorded and passed to the hardware. This is a very small 8-entry buffer used to
record the most recently used instructions with small strides. Each entry contains
the program counter (PC) of the particular instruction and a stride counter. The
counter is used to count how many times the instruction occurs after it was last
fed into the prefetcher. The counter will be set to a maximal value (decided by
cache line size/stride) and is then decremented by one each time the instruction
is executed. The instruction is only fed into the prefetcher when its counter is
decreased to zero; then, the counter will be reset to the maximum value.

For example, if we have an array access (in a loop) with a stride of 4 bytes,
the counter will be set to 8 initially. Thus, during eight occurrences of this load
instruction, only once it is sent to the prefetcher.

This technique reduces 5% of all the prefetch table accesses as well as 10%
of the extra L1 cache tag lookups, while resulting in less than 0.3% performance
degradation.

3.5 Hardware Prefetch Filtering Using PFB

To further reduce the L1 tag-lookup related energy consumption, we add a
hardware-based prefetch filtering technique. Our approach is based on a very
small hardware buffer called the Prefetch Filtering Buffer(PFB).



86 Y. Guo et al.

When a prefetch engine predicts a prefetching address, it does not prefetch
the data from that address immediately from the lower-level memory system
(e.g., L2 Cache). Typically, tag lookups on L1 tag-arrays are performed. If the
data to be prefetched already exists in the L1 Cache, the prefetch request from
the prefetch engine is dropped. A cache tag-lookup costs much less energy com-
pared to a full read/write access to the low-level memory system (e.g., the L2
cache). However, associative tag-lookups are still energy expensive.

To reduce the number of L1 tag-checks due to prefetching, we add a PFB
to remember the most recently prefetched cache tags. We check the prefetching
address against the PFB when a prefetching request is issued by the prefetch
engine. If the address is found in the PFB, the prefetching request is dropped
and we assume that the data is already in the L1 cache. When the data is not
found in the PFB, we perform normal tag lookup and proceed according to the
lookup results. The LRU replacement algorithm is used when the PFB is full.
The prefetch filtering scheme using the PFB is shown in Fig. 3.

A smaller PFB costs less energy per access, but can only filter out a smaller
number of useless prefetches. A larger PFB can filter out more useless prefetches,
but each access to the PFB costs more energy. To find out the optimal size of
the PFB, we simulated a set of benchmarks with PFB sizes of 1 to 16. We will
show in Sec. 5 that an 8-entry PFB is large enough to accomplish the prefetch
filtering task with very small performance overhead.

PFBs are not always correct in predicting whether the data is still in L1
since the data might have been replaced although its address is still present in
the PFB. We call this case a PFB misprediction. High PFB mispredictions would
result in performance loss because useful prefetches are dropped. Fortunately, as
we will show later, the PFB misprediction rate is very low (close to 0).

4 Experimental Assumptions

4.1 Experimental Framework

We implement the hardware-based data prefetching techniques by modifying the
SimpleScalar [5] simulator. The software prefetching schemes are implemented
using SUIF [19] and simulated with the modified SimpleScalar which can recog-
nize prefetch instructions. We also use SUIF to implement the compiler passes
for power-aware prefetching, generating annotations for all the prefetching hints
which we later transfer to assembly codes. The binaries input to the SimpleScalar
simulator are created using a native Alpha assembler. The parameters we use
for the simulations are listed in Table 1.

The benchmarks evaluated are listed in Table 2. The SPEC2000 bench-
marks [1] use mostly array-based data structures, while the Olden benchmark
suite [15] contains pointer-intensive programs that make substantial use of linked
data structures. We randomly select a total of ten benchmark applications, five
from SPEC2000 and five from Olden. For SPEC2000 benchmarks, we fast for-
ward the first one billion instructions and then simulate the next 100 million
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Table 1. Baseline parameters

Processor speed 1GHz

Issue 4-way, out-of-order

L1 D-cache 32KB, CAM-tag, 32-way, 32bytes
cache line

L1 I-cache 32KB, 2-way, 32bytes cache line

L1 cache latency 1 cycle

L2 cache unified, 256KB, 4-way, 64bytes
cache line

L2 cache latency 12 cycle

Memory latency 100 cycles latency + 10 cycles/word

Table 2. SPEC2000 & Olden benchmarks

Benchmark Description

SPEC2000

181.mcf Combinatorial Optimization

197.parser Word Processing

179.art Image Recognition / Neural Nets

256.bzip2 Compression

175.vpr Versatile Place and Route

Olden

bh Barnes & Hut N-body Algorithm

em3d Electromagnetic Wave Propagation

health Colombian Health-Care Simulation

mst Minimum Spanning Tree

perimeter Perimeters of Regions in Images

instructions. The Olden benchmarks are simulated to completion except for one
(perimeter), since they complete in relatively short time.

4.2 Energy Modeling

To accurately estimate power and energy consumption in the L1 and L2 caches,
we perform circuit-level simulations using HSpice. We base our design on a re-
cently proposed low-power circuit [20] that we implemented in 100-nm BPTM
technology. Our L1 cache includes the following low-power features: low-swing
bitlines, local word-line, CAM-based tags, separate search lines, and a banked
architecture. The L2 cache we evaluate is based on a banked RAM-tag
design.

As we expect that implementations in 100-nm technology would have sig-
nificant leakage, we apply a recently proposed circuit-level leakage reduction
technique called asymmetric SRAM cells [2]. This is necessary because other-
wise our conclusions would be skewed due to very high leakage power. The speed



88 Y. Guo et al.

enhanced cell in [2] has been shown to reduce L1 data cache leakage by 3.8X for
SPEC2000 benchmarks with no impact on performance. For L2 caches, we use
the leakage enhanced cell which increases the read time by 5%, but can reduce
leakage power by at least 6X. In our evaluation, we assume speed-enhanced cells
for L1 and leakage enhanced cells for L2 data caches, by applying the different
asymmetric cell techniques respectively.

The power consumption for our L1 and L2 caches are shown in Table 3.

Table 3. Cache configuration and power consumption

Parameter L1 L2

size 32KB 256KB

tag array CAM-based RAM-based

associativity 32-way 4-way

bank size 2KB 4KB

# of banks 16 64

cache line 32B 64B

Power (mW)

tag 6.5 6.3

read 9.5 100.5

write 10.3 118.6

leakage 3.1 23.0

reduced leakage 0.8 1.5

If an L1 miss occurs, energy is consumed not only in L1 tag-lookup, but also
when writing the requested data back to L1. L2 accesses are similar, except that
an L2 miss goes to off-chip main memory.

Table 4. Prefetch hardware table and power consumption

Table implementation 64×64 CAM-array

P update (including lookup) 7.4mW

P lookup 7.3mW

Each prefetching history table is implemented as a 64×64 fully-associated
CAM-array. The power consumption for each lookup is 7.3mW and each update
to the table costs 7.4mW based on HSpice simulation. The power numbers are
shown in Table 4. The leakage energy of these hardware tables are very small
compared to L1 and L2 caches due to their small area.

For software prefetching, the cost of the execution of a prefetch instruction
includes an access to the L1 instruction cache by the prefetch instruction, and the
pipeline cost of instruction fetching, decoding, and the calculation of prefetching
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addresses. These extra costs will increase the total energy consumption. Each L1
instruction cache access consumes about the same energy as an L1 data cache
access, and the rest of the execution costs is generally comparable to an L1 data
cache access [4]. Thus we assume that each prefetch instruction executed would
consume an extra cost of roughly two times the L1 cache read energy cost in
Fig. 2.

5 Results and Analysis

We simulated each of the four energy-saving techniques and evaluated their im-
pact on energy consumption as well as performance speedup. All the techniques
are applied to the combined stride and dependence-based pointer prefetching.
We first show the results by applying each of the four techniques individually;
and then, we apply them together in order.

5.1 Compiler-Based Techniques

Figure 5 shows the results for the three compiler-based techniques, first sepa-
rately and then combined. The results shown are normalized to the baseline,
which is the combined stride and pointer prefetching scheme without any of the
new techniques.

Figure 5(a) shows the number of prefetch table accesses. The compiler-based
prefetching filtering (CBPF) works best for parser : more than 33% of all the
prefetch table accesses are eliminated. On average, CBPF achieves about 7%
reduction in prefetch table accesses. The compiler-assisted selective prefetching
(CASP) achieves the best reduction for health, about 20%, and on average saves
6%. The stride counter filtering (SC) technique removes 12% of prefetch table
accesses for bh, with an average of over 5%. The three techniques combined filter
out more than 20% of the prefetch table accesses for five of the ten benchmarks,
with an average of 18% across all applications.

Figure 5(b) shows the extra L1 tag lookups due to prefetching. CBPF reduces
the tag lookups by more than 8% on average; SC removes about 9%. CASP does
not show a lot of savings, averaging just over 4%. The three techniques combined
achieve tag-lookup savings of up to 35% for bzip2, averaging 21% compared to
the combined prefetching baseline.

The performance penalty introduced by the three techniques is shown in
Fig. 5(c). As shown, the performance impact is negligible. The only exception is
em3d, which has less than 3% of performance degradation, due to filtering using
SC.

5.2 Prefetch Filtering Using PFB

Prefetch filtering using PFB will filter out those prefetch requests which would
result in a L1 cache hit if issued. We simulated different sizes of PFB to find
out the best PFB size, considering both performance and energy consumption.
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Fig. 5. Simulation results for the three compiler-based techniques: (a) normalized num-
ber of the prefetch table accesses; (b) normalized number of the L1 tag lookups due to
prefetching; and (c) impact on performance

Figure 6 shows the number of L1 tag lookups due to prefetching after applying
the PFB prefetch filtering technique with PFB sizes ranging from 1 to 16.

As we can see from the figure, even a 1-entry PFB can filter out about 40%
of all the prefetch tag accesses (on average). An 8-entry PFB can filter out over
70% of tag-checks with almost 100% accuracy. Increasing the PFB size to 16
does not increase the filtering percentage significantly. The increase is about 2%
on the average compared to an 8-entry PFB, while the energy cost per access
doubles.

We also show the ideal situation (OPT in the figure), where all the prefetch
hits are filtered out. For some of the applications, such as art and perim, the
8-entry PFB is already very close to the optimal case. This shows that an 8-entry
PFB is a good enough choice for this prefetch filtering.

As we stated before, PFB predictions are not always correct: it is possible
that a prefetched address still resides in the PFB but it does not exist in the
L1 cache (it has been replaced). The number of PFB mispredictions is shown
in Table 5. Although the number of mispredictions increases with the size of
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Fig. 6. The number of L1 tag lookups due to prefetching after applying the
hardware-based prefetch filtering technique with different sizes of PFB

Table 5. The number of PFB mispredictions for different sizes of PFBs

Bench PFB-1 PFB-2 PFB-4 PFB-8 PFB-16

mcf 0 0 0 1 9

parser 0 0 0 0 0

art 0 0 0 0 0

bzip2 0 0 0 0 0

vpr 0 0 0 0 0

bh 0 0 0 0 0

em3d 0 0 0 0 0

health 0 0 0 0 1

mst 0 0 11 11 11

perimeter 0 0 0 0 0

the PFB, an 8-entry PFB makes almost perfect predictions and does not affect
performance.

5.3 Energy Savings

We apply the techniques in the following order CBPF, CASP, SC, and PFB. We
show the energy savings after each technique is added in Fig. 7.

Compared to the combined stride and pointer prefetching, the compiler-based
prefetch filtering (CBPF) shows good improvement for mcf and parser, with an
average reduction of total memory system energy of about 3%.

The second scheme, compiler-assisted selective prefetching (CASP), reduces
the energy consumed by about 2%, and shows good improvement for health and
em3d (about 5%).

The stride counter approach is then applied. It reduces the energy consump-
tion for both prefetch hardware tables and L1 prefetch tag accesses. It improves
the energy consumption consistently for almost all benchmarks, achieving an
average of just under 4% savings on the total energy consumption.
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Fig. 7. Energy consumption in the memory system after applying different energy-
aware prefetching schemes

Finally, the prefetch filtering technique is applied with an 8-entry PFB. The
PFB reduces more than half of the L1 prefetch tag lookups and improves the
total energy consumption by about 3%.

Overall, the four power-saving techniques together reduce by almost 40%
the energy overhead of the combined prefetching approach: the energy overhead
due to prefetching is reduced from 28% to 17%. This is about 11% of the total
memory system energy (including L1, L2 caches and prefetch tables).

5.4 Performance Degradation

Figure 8 shows the performance statistics associated with each of the four tech-
niques.

We can see that there is no performance impact except for em3d where stride-
filtering yields less than 3% speedup degradation. On average, the performance
degradation is only 0.4%, while we achieve an average energy saving of 11%.

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

mcf parser art bzip2 vpr bh em3d health mst perim avg

sp
ee

d
u

p

no-prefetch combined CBPF CASP SC PFB

Fig. 8. Performance speedup after applying different energy-aware prefetching schemes

6 Conclusion

This paper explores the energy-efficiency aspects of data-prefetching techniques
and proposes several new techniques to make prefetching energy-aware. Our
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proposed techniques include three compiler-based approaches which help to
make the prefetch predictor more selective and filter out unnecessary prefetches
based on static program information. We also propose a hardware based filtering
technique to further reduce the energy overheads due to prefetching in the L1
cache. Our experiments show that the proposed techniques combined reduce the
prefetching-related energy overheads by 40%, with almost no impact on perfor-
mance.
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Abstract. In a system-on-a-chip embedded system, an external bus
connects embedded processor cores, I/O peripherals, direct memory ac-
cess (DMA) and off-chip memory. The power on the external bus makes
up a significant portion of the overall power use in the system. In this pa-
per, we will focus on the address and control bus power on the external
bus. We have developed an external bus power model which monitors
memory bus state transitions and models power-efficient bus arbitra-
tion schemes power. Our model allows us to consider performance/power
trade-offs in managing off-chip memory accesses. We use an Analog De-
vices ADSP-BF533 multimedia system-on-a-chip embedded system as
our target architecture to validate our model. By using more power-
efficient external bus arbitration schemes, we find we can reduce overall
power by as much as 18%.

Keywords: Power-Aware, External Memory, Bus Arbitration, Embed-
ded System, Media Processor.

1 Introduction

There is a growing gap between the speed of microprocessors and the supporting
off-chip memory systems. Also, the power associated with off-chip accesses can
dominate the overall power budget. One approach to addressing both issues is to
consider how best to schedule off-chip accesses. Due to the intrinsic capacitance
of the bus lines, a considerable amount of power is required at the I/O pins
of a system-on-a-chip processor when data has to be transmitted through the
external bus [1,2]. The capacitance associated with the external bus is much
higher than the internal node capacitance inside a microprocessor. For example,
a low-power embedded microprocessor system like an Analog Devices ADSP-
BF533 running at 500 MHz consumes about 374 mW on average during normal
exection. Assuming a 3.65 V voltage supply and a bus frequency of 133 MHz,
the average external power consumed is around 170 mW, which accounts for
approximately 30% of the overall system power dissipation [3].

In modern CMOS circuit design, the power dissipation of the external bus is
directly proportional to the capacitance of the bus and the number of transitions
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( 1 → 0 or 0 → 1 ) on bus lines [4,5]. In general, the external bus power can be
expressed as:

Pbus = CbusV
2
extfkμ (1)

In the above equation, Cbus denotes the capacitance of each line on the bus,
Vext is bus the supply voltage, f is the bus frequency, k is the number of bit
toggles per transition on the full width of the bus, and μ is the bus utilization
factor. This power equation is an activity-based model. It not only accounts for
the dynamic power dissipated on the bus. It also includes the pin power that
drives the signal I/O related to the external bus communication.

The techniques to minimize the power dissipation in buses are well explored
in previous research [1,6,7]. The major approaches are utilizing the bus encoding
to minimize the bus activity. Various mixed-bus encoding techniques (such as
Gray code and redundant codes) were developed to save on bus power. Gray
code addressing is based on the fact that address changes are often sequential
and so using Gray codes to count switch the least number of signals on the
bus. However, better performance can be obtained by using redundant code [1].
Many redundant codes have been proposed to add more signals on the bus line
in order to reduce the number of transitions. Bus-invert coding [7] is one class
of the redundant code. Bus-invert coding adds an INV signal on the bus to
represent the polarity of the address on the bus. The INV signal value is chosen
by considering how best to minimize the hamming distance between last address
on the bus and the current one. Some codes can be applied to both the data
and address bus, though some are more appropriate on to addresses. All power-
saving codes are based on the assumption that the full width of the address bus
are sent on each access. There are several issues related to external bus power
that have not been properly addressed in previous work:
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– An external bus contains three different components: control bus lines, ad-
dress bus lines and bus data lines. The control bus consumes bus power,
which was not considered in previous models.

– In some external memory modules (such as SDRAM), row and column ad-
dress are shared on the address bus.

– Memory state transitions and stalls (such as page misses), which cause power
and performance penalties, were not considered in the previous models.

The main contribution of this paper is the creation of an accurate external
bus power estimation model, which overcomes the issues listed above. This new
power model enables us to evaluate heuristics that can balance power/delay
trade-offs associated with external bus data transfers. This paper is organized
as follows. In section 2 we describe the target architecture for this work, which
contains a system-on-a-chip processor, a 16 MB SDRAM and an external bus
interface unit. Section 3 describes various bus arbitration algorithms for power
and performance. In Section 4, we present our bus power modeling scheme, which
considers both control signals and memory state transitions. Section 5 present
power/performance results an MPEG-2 encoder and decoder. Finally, Section 6
presents conclusions.

2 Background

2.1 System Architecture

A typical system-on-a-chip embedded system includes many components: a high-
speed processor core, hardware accelerators, a rich set of peripherals, direct
memory access (DMA), on-chip cache and off-chip memory. The system archi-
tecture used in our study, which includes off-chip memory, is typical of current
embedded platforms.

In modern multimedia applications, the requirements on processing through-
put is increasing faster and faster. Today, for a D1 (720x480) video codec (en-
coder/decoder) media node, we need to be able to process 10 million pixels per
second. This workload requires a RISC media processor for computation, de-
vices with streaming-media capability via a parallel peripheral interface (PPI)
for connecting high speed video and data converters, and synchronous serial
ports (SPORT) for connecting to high speed telecom interfaces. The associated
high data throughput requirements make it impossible to store all the data in
on-chip memory or cache. Therefore, a typical multimedia embedded system usu-
ally has a high-speed system-on-a-chip microprocessor and a very large off-chip
memory. The Analog Devices Blackfin family processors [8], the Texas Instru-
ment OMAP [9] and the SigmaDesign EM8400 series [10] are all examples of
low-power embedded media chip sets which share many similarities in system
designs and bus structures. The system architecture in our study is extracted
from those designs and is shown in Figure 1.

When trying to process streaming data in real-time, the greatest challenge
is to provide enough memory bandwidth in order to sustain the necessary data
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rate. To insure sufficient bandwidth, hardware designers usually provide multiple
buses in the system, each having different bus speeds and different protocols. An
external bus is used to interface to the large off-chip memory system and other
asynchronous memory-mapped devices. The external bus has a much longer
physical length than other buses, and thus typically has much higher bus capac-
itance and greater power dissipation. The goal of work is to accurately model
this power dissipation in a complete system power model so we can explore new
power-efficient scheduling algorithms for the external memory bus.

2.2 External Bus Interface Unit

In the system design of Figure 1, there are four buses shown. Two buses that are
clocked at the frequency of the processor are used to interconnect the processor
and caches. There is one internal bus and one external bus, that are clocked at
a slower frequency. The internal bus and external bus are bridged by an exter-
nal bus interface unit (EBIU), which provides a glue-less interface to external
memory.

There are two sub-modules inside the EBIU, a bus arbitrator and a memory
controller. When the units (processor or DMA’s) in the system need to have
access to the external memory, they only need to make a request to the EBIU
buffer, through the internal bus. The EBIU will read the request and handle
the off-chip communication tasks through the external bus. Because of potential
contention between users on the bus, arbitration for the external bus interface
resources is required. The bus arbitrator grants requests based on a pre-defined
order. Only one access request can be granted at a time. When a request has
been granted, the memory controller will communicate with the off-chip memory
directly based on the specific memory type and protocol. The EBIU can sup-
port SDRAM, SRAM, ROM, FIFOs, flash memory and ASIC/FPGA designs,
while the internal units do not need to discriminate between different memory
types. In this paper, we use multi-banked SDRAM as an example of memory
technology and integrate SDRAM state transitions into our external bus model
(our modeling framework allows us to consider different memory technologies,
without changing the base system-on-a-chip model).

3 Bus Arbitration

The bus arbitration unit in the EBIU determines the sequencing of the load/store
requests to SDRAM, with the goals of reducing contention and maximizing bus
performance. The requests from each unit will be queued in the EBIU’s wait
queue buffer. When a request is not immediately granted, the request enters
stall mode. Each request can be represented as a tuple (t, s, b, l), where t is the
arrival time, s tells whether it is a load or store, b is the address of the block
and l is the extent of the block. The arbitration algorithm schedules requests
sitting in the wait queue buffer with a particular performance goal in mind. The
algorithm needs to guarantee that bus starvation will not occur.
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3.1 Traditional Algorithms

A number of different arbitration algorithms have been used in microprocessor
system bus designs. The simplest algorithm is First Come First Serve (FCFS). In
this algorithm, requests are granted the bus in the order of arrival. This algorithm
simply removes contention on the external bus without any optimization and
pre-knowledge of the system configuration. Because FCFS schedules the bus
naively, the system performs poorly due to instruction and data cache stalls.
No priority is given to cache accesses over DMA access (cache access tend to
be more performance critical than DMA accesses). An alternative is to have a
Fixed Priority scheme where cache accesses always have higher priority than
DMA accesses. For different DMA accesses, peripheral DMA accesses will have
higher priority than memory DMA accesses. This is needed because if a the
peripheral device access is held off for a long period of time, it could cause the
peripheral to lose data or get out of sync. The Fixed Priority scheme selects the
request with highest priority in the waiting queue instead of the oldest. It may
provide similar external bus performance as the FCFS algorithm, but the overall
system performance should be better if the application is dominated by the cache
accesses. For real-time embedded applications which are dominated by DMA
accesses, cache accesses are tuned, and cache misses are infrequent. Cache fetches
can be controlled to occur only at non-critical times using cache prefetching and
locking mechanism. Therefore, for real-time embedded applications, FCFS and
Fixed Priority scheme produce very similar external bus behaviors.
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Fig. 2. Hamiltonian Path Graph

3.2 Power Aware Algorithms

To achieve an efficient external bus performance, FCFS and Fixed Priority are
not sufficient. Power and speed are two major factors of bus performance. If



100 K. Ning and D. Kaeli

a power-efficient arbitration algorithm is aware of the power and cycle costs
associated with each bus request in the queue, each request can be scheduled so to
better balance power/performance. The optimization target can be to minimize
power P , minimize delay D or more generally to minimize PnDm. This problem
can be formulated as a shortest Hamiltonian path (SHP) on a properly defined
graph. The HamiltonianC path is a path in a directed graph that visits each
vertex exactly once, without any cycles. The shortest Hamiltonian path is the
Hamiltonian path that has the minimum weight. The problem is an NP-complete
problem, and in practice, heuristic methods are used to solve the problem [11].

Let R0 denotes the last request fulfilled on the external bus. R1, R2, ... RL are
the requests in the wait queue. Each request Ri has four elements (ti, si, bi, li),
representing the arrival time, operating type (load/store), starting address and
access length. The bus power and delay are dependent on the current bus state
and next bus state for each request. The current bus state is the state of the bus
after the previous bus access has completed. P (i, j) represents the bus power
dissipated for request Rj , given Ri was the immediate past request. D(i, j) is
the bus delay between the time request Rj is submitted and the time request
Rj is completed, where Ri was the immediate past request. The cost of selecting
request Rj after request Ri can be formulated as Pn(i, j)Dm(i, j). We can define
a directed graph G = (V,E) whose vertices are the requests in the wait queue,
with vertex 0 representing the last request completed. The edges of the graph
are all the pairs (i, j). The weight of each edge is weighted by w(i, j), equal to
the power delay product of processing request Rj after request Ri.

w(i, j) = Pn(i, j)Dm(i, j), n,m = 0, 1, ... (2)

The problem of optimal bus arbitration is equivalent to the problem of finding
a Hamiltonian path starting from vertex 0 in graph G with a minimum traversal
edge weight. Figure 2 describes a case when there are 3 requests in the wait queue.
One of the Hamiltonian pathes is illustrated with a dot line. The weight for this
path is w(0, 3)+w(3, 1)+w(1, 2). For each iteration, a shortest Hamiltonian path
will be computed to obtain the minimum weight path. The first request after
request R0 on that path will be the request selected in next bus cycle. After the
next request is completed, a new graph will be constructed and a new minimum
Hamiltonian path will be found.

Finding the shortest Hamiltonian path has been shown to be NP-complete.
To solve the problem, we use heuristics. Whenever the path reaches vertex Ri,
the next request Rk with minimum w(i, k) will be chosen. This is a greedy
algorithm, which selects the lowest weight for each step. The bus arbitration
algorithm only selects the second vertex on that path. We avoid searching the
full Hamiltonian path, and so the bus arbitration algorithm can simply select
a request based on minimum w(0, k) from request R0. The complexity of that
algorithm is O(L). When w(i, j) = P (i, j), arbitration can select to minimize
power. When w(i, j) = D(i, j), then we can minimize for delay. To consider the
power efficiency, the power delay product can be used. Selecting different values
for n and m change how we tradeoff power with delay using weights w(i, j).
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Table 1. SDRAM Commands Truth Table

Command SMS SCAS SRAS SWE SCKE SA10

PRECHARGE low high low low high high

ACTIVATE low high low high high

READ low low high high high low

WRITE low low high low high low

REFRESH low low low high high

NOP low high high high high

Fig. 3. SDRAM System Interface

To make sure the arbitration algorithm does not produce starvation, a time-
out mechanism is added for the requests. The timeout values for cache and DMA
are 100 and 550 cycles, respectively.

4 Power Modeling

To model power accurately, we are using the Analog Devices Blackfin frio-eas-
rev0.1.7 toolkit. This model allows us to model power accurately, and has been
validated with physical measurements as described in [12]. The power includes
dynamic power to charge and discharge the capacitance along the external bus
and the pin power to drive the bus current. The external bus power will be
quite different if the memory technology is different. Today, there is almost no
external bus power model that considers memory technology. In our model, we
use SDRAM in our power model. The same approach is also applicable to other
types of memory modules. The external bus power in each transaction will be the
total number of pins that toggled on the bus. The power consumption includes
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the commands sent on the control bus, the row address and column address on
the address bus and the data on data bus.

SDRAM is commonly used in cost-sensitive embedded applications that re-
quire large amounts of memory. The SDRAM model we are using is from Mi-
cron, MT48LC16M16A2 Synchronous DRAM. Figure 3 shows a block diagram
of the SDRAM interface in the system architecture described in Section 2. The
SDRAM can be organized as multiple banks. Inside each bank, there are many
pages, which are selected by row address. The size of each page can be 1 KB,
4 KB or larger. The address inside one page is called the column address. The
external bus is a multi-line bus, which can be grouped into three sub-buses: a
control bus (including SCAS, SRAS, SWE, SCKE, SA10, DQM[1:0], BS[1:0])
which carries the SDRAM command signals and bank address, an address bus
(including A[12:11], A[9:0]) which multiplexes the row address and the column
address, and a data bus (DATA[15:0]) which transmits the loaded or stored data
between the SDRAM interface and SDRAM.

The SDRAM operates on a command-by-command basis. Before every access
to SDRAM, EBIU sends one or more commands on the control bus to signal
to the SDRAM what the requested data is. The commonly used commands and
their associated pin values are listed in Table 1. Between each pair of commands,
a set amount of delay is required to meet the SDRAM specification. The delay
cycles are preprogrammed into the SDRAM. tRAS is the required delay between
issuing an ACTIVATE command and a PRECHARGE command. tRP is the
required delay after a PRECARGE command. tRCD is the delay between an
ACTIVATE command and a READ/WRITE command. Column Address Strobe
(CAS) latency tCAS is the delay from a READ/WRITE command being issued
to data ready.

There are various possibilities when accessing the SDRAM. Whenever a
page miss occurs, the EBIU executes a PRECHARGE command followed by
a bank ACTIVATE command, before executing the READ or WRITE com-
mand. This latency is called the page miss penalty. If there is a page hit, the
READ or WRITE command can be transmitted immediately without requir-
ing the PRECHARGE command. Figure 4 is a timing diagram for processing
a read page miss operation. Some latency is required after the PRECHARGE
and ACTIVATE commands. For SDRAM READ commands, there is a latency
from the start of the READ command to the availability of data from the bus.
This latency is always present for the first read in the burst and for any single
read transfer. Subsequent read bursts do not have any latency, because those
operations can be pipelined [8]. When a page miss occurs (about 70% of time for
MPEG-2), more power and bus cycle delay are needed to complete the SDRAM
access request. Another side effect occurs when the bus direction is switched
(i.e., a READ after WRITE or WRITE after READ.) The bus controller pin
needs time to turn around the bus, and is called the bus turnaround penalty.

In our bus model, we assume that the power to drive the control bus and
address bus are the same. For each read/write request, we first determine the
series of commands needed to complete that request. For each command, the
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bus state transitions, pins toggle and the utilization factor is recorded. Finally,
the average bus power dissipation is calculated using Equation 1.

5 Experiments

5.1 Procedure

In our experimental study, we used a power model of the Analog Devices Black-
fin family system-on-a-chip processors as our primary system model. We run
code developed for ADSP-BF533 EZ-Kit Lite board using the VisualDSP++
toolset. This board provides a 500 MHz ADSP-BF533 microprocessor, 16 MB
SDRAM, and CCIR-656 video I/O interface. Inside the ADSP-BF533 micropro-
cessor, there are both L1 instruction and data caches. The instruction cache is
16 KB 4-way set associative. The data cache is 16 KB 2-way associative. Both
caches use a 32 byte cache line size. The SDRAM module selected is Micron
MT48LC16M16A2 16 MB SDRAM. The SDRAM interface connects to a 128
Mbit (x8) SDRAM devices to form one 16 MB of external memory. The SDRAM
contains 4 banks, with a 1 KB page size. It also has following characteristics to
match the on-chip SDRAM controller specification: supply voltage 3.3 V, oper-
ating frequency 133MHz, burst length of 1, column address strobe (CAS) latency
tCAS 3 system clock cycles, tRP and tRCD 2 system clock cycles, refresh rate
programmed at 4095 system clock cycles.

Our target workload is MPEG-2. We are using a real-time MPEG-2 en-
coder and decoder source codes that include optimized Blackfin MPEG-2 codec
libraries used in the ADI eMedia product. The input datasets used are the cheer-
leader for encoding (the size is 720x480 and the format is interlaced video) and
tennis for decoding (this image is encoded by the MPEG-2 reference encoder,
the size is also 720x480, the format is progressive video). Both inputs are used
heavily by the multimedia community.

In order to implement the external power model and be able to assess the
impact of our power-efficient bus arbitration algorithm, we performed the follow-
ing experiments. First, we modified the Blackfin instruction level simulator to
include the system bus structure model and cache activity in order to generated
a trace of external bus reference. In the second step, we built a separated EBIU
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(a) (b)

(a) (b)

Fig. 5. MPEG-2 encoder and decoder external bus Power(a)/Delay(b) graph

module to simulate the external bus behavior capturing detailed SDRAM state
transitions and a detailed bus arbitration module (as described in Section 3). The
average bus power and performance are computed from the simulation results
produced by our EBIU simulator.

5.2 Results

We consider the multimedia applications as representative workload for the sys-
tem architecture in our experiment. The simulated applications were optimized
Blackfin real-time MPEG-2 encoder and MPEG-2 decoder. Both applications
includes many computational intensive functions and include both cache and
DMA accesses to process D1 (720x480, 30fps) video content in less than 500
MIPS. For both applications, we ran the simulation for 170 million processor
cycles to obtain the external bus traffic. There are 2.8 million EBIU requests
recorded for the encoder and 2.9 million EBIU requests for the decoder.

There are seven different bus arbitration schemes in our simulation envi-
ronment. We consider two traditional schemes: Fixed Priority, FCFS, and five
power-efficient schemes. For Fixed Priority we assign the following priority order

Table 2. MPEG-2 Decoder Simulation Results

Arbitration
Scheme

Utilization
Factor (μ)

Average
Power
(Pavg)

Average
Delay
(Davg)

FixedPriority 66.0% 58.47 171.94

FCFS 64.6% 56.05 168.51

(0, 1) 62.8% 50.89 100.66

(1, 0) 63.1% 48.57 101.52

(1, 1) 62.8% 48.14 100.42

(1, 2) 62.8% 48.18 100.63

(2, 1) 62.9% 48.23 100.78
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Table 3. MPEG-2 Encoder Simulation Results

Arbitration
Scheme

Utilization
Factor (μ)

Average
Power
(Pavg)

Average
Delay
(Davg)

FixedPriority 60.6% 55.85 140.36

FCFS 58.3% 50.19 137.93

(0, 1) 57.8% 48.63 125.69

(1, 0) 57.9% 45.91 126.18

(1, 1) 57.8% 45.94 125.87

(1, 2) 57.7% 45.99 125.83

(2, 1) 57.8% 45.95 125.98

from highest to lowest: instruction cache, data cache, PPI DMA, SPORT DMA,
memory DMA. In the power-efficient schemes, we use the (n,m) format to repre-
sent them. n and m are the exponential numbers in Equation 2. Different n and
m values will have different weights on power and delay. (1, 0) is the minimum
power scheme, (0, 1) is the minimum delay scheme, and (1, 1), (1, 2), (2, 1) have
both power and delay in them. The MPEG-2 encoder and decoder simulation
results are listed in Tables 2 and table3, respectively.

Figure 5 shows the power and delay of all seven arbitration schemes for both
encoder and decoder. In the figure, we see that power-efficient schemes produce
much lower power dissipation and and experience shorter bus delays than tradi-
tional schemes. Power-efficient scheme (1, 1) enjoys an 18% power savings relative
to a Fixed Priority scheme for both MPEG-2 encoder and decoder. For speed im-
provement, the power-efficient scheme (1, 1) obtains a 40% reduction in cycles
than the Fixed Priority scheme on MPEG-2 decoding, and a 10% reduction for
MPEG-2 encoder. The speed improvement difference between the decoder and
the encoder is due to the utilization factors. The encoder produces less traffic on
the external bus than the decoder, therefore the average number of requests for
the encoder in the wait queue is smaller than the number for the decoder.

Comparing the results across the power-efficient schemes, we can see that the
performance differences are small, and that no one scheme provides significant
advantages over the rest. The scheme (1, 0), minimum power approach, is actu-
ally more favorable with regards to design implementation. It basically needs a
Hamming distance (XOR) computation unit and a comparator. For each itera-
tion, the arbitrator uses the Hamming distance computation unit to accumulate
the power used for each request that is pending in the wait queue, and uses the
comparator to select the minimum. For 0.13μm CMOS technology and a 1.2 V
power supply, an XOR transistor takes about 30 fJ to switch the transistor state
in the slow N and slow P process corner. In our case, the number of transistors
to implement the (1, 0) arbitrator is on the order of 103. On average there are
2 requests in the wait queue and the request arrival interval is 60 cycles. The
average power consumption is around 0.5 mW, which is much smaller than the
power saving on the external bus.
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6 Conclusions

With memory speed and bus capacitance continually increasing, accesses on the
external bus consume more and more of the total power budget on a system-
on-a-chip embedded system. This paper proposes a new external bus arbitra-
tion scheme that reduces bus power and delay. Our experiments are based on
modeling a low-end embedded multimedia architecture while running real-time
MPEG-2 encoding and decoding. Our results show that significant power and
delay reductions can be achieved using power-efficient bus arbitration schemes.
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Abstract. This paper introduces the concept of context-independent coding us-
ing frequency-based mapping schemes in order to reduce off-chip interconnect
power consumption. State-of-the-art context-dependent, double-ended codes for
processor-SDRAM off-chip interfaces require the transmitter and receiver (mem-
ory controller and SDRAM) to collaborate using current and previously transmit-
ted values to encode and decode data. In contrast, the memory controller can use
a context-independent code to encode data stored in SDRAM and subsequently
decode that data when it is retrieved, allowing the use of commodity memories.
In this paper, a single-ended, context-independent code is realized by assigning
limited-weight codes using a frequency-based mapping technique. Experimental
results show that such a code can reduce the power consumption of an uncoded
off-chip interconnect by an average of 30% with less than a 0.1% degradation in
performance.

1 Introduction

Modern embedded networking, video, and image processing systems are typically im-
plemented as systems-on-a-chip (SoC) in order to reduce manufacturing costs and over-
all power and energy consumption. By integrating all of the peripheral functionality
directly onto the same chip with the core microprocessor, both chip manufacturing and
system integration costs can be lowered dramatically. In addition to cost, managing
power and energy is a first order constraint that drives the design of embedded systems
based on SoCs. However, most modern SoC-based embedded systems require more
memory capacity than can reasonably be embedded into a single core. In such systems,
the interconnect between the processor and external memory can consume as much or
more power than the core itself. Even though external memory and its associated inter-
connect are major contributors to the overall power dissipation in SoC-based embedded
systems, such systems will continue to require the memory capacity afforded by exter-
nal memory into the foreseeable future. Therefore, it is essential to develop advanced
memory controller architectures to reduce the power dissipation of external memories
and the interconnect between the embedded SoC core and that memory.

Encoding data that is stored in memory can minimize the power consumed by
the processor-memory interconnect. Dynamic power is consumed by the interconnect
drivers when there are bit transitions. To minimize this power, double-ended, context-
dependent codes such as the bus-invert code have previously been proposed. Double-
ended codes encode data at the transmitter and decode it at the receiver. For a processor-
memory interconnect, this implies that the SDRAM also needs to participate in such
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codes. Context-dependent codes use the value last transmitted on the interconnect as
well as the current data in order to encode the data to minimize transitions. For example,
bus-invert coding either transmits the data value unchanged or its inverse, depending on
which value minimizes transitions on the interconnect. If the SDRAM were modified
to support such coding, bus-invert coding could reduce transitions on the interconnect
by 22% on average.

In contrast, single-ended, context-independent codes are much simpler to imple-
ment, as they do not require modifications to the SDRAM. This paper introduces the
concept of frequency-based, single-ended, context-independent codes for interconnect
power reduction. The simplest frequency-based code simply remaps the input space
based upon the measured or expected frequency of occurrence of each data value. De-
spite the fact that such a code is context-independent, and so does not account for
possible switching on the interconnect, it is able to reduce the transitions on the in-
terconnect by 28% on average. This simple code results in a larger power decrease on
the interconnect than context-dependent bus-invert codes that are explicitly designed to
minimize switching activity. Furthermore, frequency-based coding can also be used to
augment limited-weight codes (LWCs). A limited-weight code maps the input data to
a wider codeword in which the number of ones in the word is restricted. The proposed
frequency-based assignment of codewords using a LWC can reduce transitions on the
interconnect by an average of 30% over the uncoded case.

Frequency-based context-independent codes reduce interconnect power consump-
tion without requiring the use of specialized SDRAM. Frequency-based codes are ef-
fective because frequently occurring values usually follow either themselves or other
frequently occurring values on the interconnect. So, if the most frequently occurring
values are all mapped to codewords that are close (Hamming distance-based) to each
other, then switching activity can be minimized. In this manner frequency-based codes
simply, but effectively, reduce dynamic power consumption on interconnects to com-
modity SDRAM.

The rest of this paper is organized as follows. The following section gives addi-
tional background on power dissipation within embedded systems, further motivating
the need for new memory controller architectures. Section 3 introduces state-of-the-art
coding techniques to reduce power consumption and discusses their limitations. In Sec-
tion 4, the proposed frequency-based limited-weight codes for low power consumption
are described. Section 5 describes a memory controller architecture for these coding
techniques. Section 6 describes the experimental setup and the benchmarks used. Sec-
tion 7 analyzes the performance of the proposed memory controller innovations on this
set of embedded computing benchmarks. Section 8 concludes the paper.

2 Power Dissipation in Embedded Systems

The architecture of a modern SoC-based embedded system is presented in Figure 1.
The SoC core has one or more simple processors, designed to provide enough com-
putational capability for the application, integrated with some embedded memory and
a variety of on-chip peripherals for data acquisition and connectivity. These systems
also integrate SDRAM, since they frequently require more memory capacity—to buffer
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Fig. 1. Typical SoC Embedded System Architecture and Approximate Power Consumption

large data streams before either processing or forwarding them—than can reasonably
be embedded into the SoC core.

Managing power dissipation and providing sufficient on-chip memory capacity are
two major challenges in the design of such SoC-based embedded systems. The Inter-
national Technology Roadmap for Semiconductors (ITRS) predicts that without sig-
nificant architectural and design technology improvements, the power consumption of
both high performance and low power SoC-based embedded systems will grow ex-
ponentially, easily exceeding power budgets [1,2]. Tethered embedded systems fre-
quently have limited power budgets because of constraints on power delivery and cool-
ing area available on peripheral buses. Mobile systems, in addition to requiring low
power dissipation, are also constrained by battery life making energy consumption an
important factor.

The annotations in Figure 1 show that, currently, the power dissipation of represen-
tative low power and high performance embedded systems is divided roughly equally
among the SoC, the memory interconnect, and the external memory. Furthermore, while
high performance embedded systems can dissipate an order of magnitude more power
than low power systems, the relative power dissipation of the SoC core, the intercon-
nect, and the memory remains similar. It is clear that in such systems, the external
memory and interconnect can dissipate as much or more power than the SoC core.
Thus, the memory system and the interconnect are candidates for techniques to reduce
and manage power and energy.

Dynamic power is dissipated on a signal line of a bus whenever there is a transition
on that line. A signal transition causes the drivers to actively change the value of the
bus, which acts as a large capacitance. The drivers can also dissipate static power when
they hold the bus at either logical 0 or logical 1, depending on the design of the drivers.
It is possible to limit this leakage power for the low frequencies of operation commonly
found in embedded systems by properly sizing the transistors within the bus drivers.
Hence, static power dissipation is typically dwarfed by the dynamic power dissipation
of the bus drivers in embedded systems. However, there are still situations in which
static power dissipation cannot be ignored, including higher frequencies of operation
and when there are voltage mismatches between the core and the memory.
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3 Related Work: Coding to Reduce Power

The techniques used to reduce power dissipation in external memory systems fall roughly
into three categories: low-power memory modes, external memory access reduction,
and double-ended techniques. Most modern commodity memories have one or more
low power modes of operation. It may be expensive to enter and exit these modes, but
frequently the memory dissipates an order of magnitude less power when it is in these
modes. Several techniques, such as those proposed in [3] and [4], can be used to deter-
mine when external memory should be powered down to minimize power dissipation
without disrupting performance. Another way to reduce the power dissipation of exter-
nal memories is to access them less frequently. These techniques use some combination
of on-chip memory, caching, and code reorganization to allow the processing core to re-
duce the number of external memory accesses [5,6,7,8]. In turn, this reduces the power
demands of the external memory when it is active and can also allow it to be put to
sleep more frequently. The final set of techniques for reducing the power dissipation of
external memories require cooperation between the memory controller and the memory.
These techniques either encode data to minimize power dissipation across the intercon-
nect or transmit additional information to the memory to enable it to access the memory
array more efficiently [9,10,11,12,13].

The majority of data encoding schemes proposed in literature are not applicable
to the off-chip interconnect between an SoC and external memory because they are
double-ended, context-dependent codes. Double-ended codes require collaboration be-
tween the transmitter and receiver to transfer encoded data. In such state-of-the-art
codes, the transmitter (i.e., the memory controller on the SoC) uses a potentially com-
plex handshaking protocol to communicate with the receiver (i.e., a decoder in the mem-
ory), which has the ability to interpret these handshakes to decode the transmitted data.
The roles of the coder and the decoder would be reversed when communicating in
the opposite direction (i.e., a memory read). So, a potentially complex codec (coder-
decoder) has to be present on both ends to successfully use these schemes. However,
commodity SDRAMs do not have a built-in codec that is capable of communicating
with the SoC core in this fashion.

Context-dependent coding schemes rely on inter-symbol correlation on successive
data transfers to reduce power consumption. However, such schemes are not effective
with commodity memory, as the memory cannot participate in the scheme. Therefore,
any coding scheme using commodity memory must be able to unambiguously decode
data read from the memory that was encoded when it was written to the memory. If
inter-symbol correlation information is used when writing the data, then that informa-
tion is not available upon reading the data, since there is no guarantee that data will be
read in exactly the same order it is written. Some context-dependent coding schemes,
such as those that use an XOR decorrelator, do not include enough information in the
codeword to unambiguously recover the original data without the context information.
However, other context-dependent schemes, such as bus-invert coding, produce code-
words that can be decoded without context information. Even then, such schemes will
only minimize power when writing to the memory, as the data will be read in a different
context than it was written. Therefore, context-dependent codes are almost exclusively
used in situations where both the transmitter and receiver can participate in the code.
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That way, the context information can be used to decode the transferred data before it is
stored. If the data is retrieved later, it is re-encoded and transferred based on the context
at that time.

The most popular and easy-to-implement double-ended context-dependent code
reported in literature in the bus-invert code [14]. The bus-invert code is a context-
dependent, double-ended code since it computes the Hamming distance between the
currently encoded data value on the bus and the next data value. If the Hamming dis-
tance exceeds �n

2 �, then the transmitter inverts the next value transmitted on the bus.
An additional line on the bus indicates whether the data is inverted or not, allowing
the receiver to unambiguously decode the transmitted data. In this manner, an n-bit
value can be transmitted over an n + 1-bit bus with at most �n+1

2 � transitions. Without
such coding, an n-bit value could cause as many as n transitions over an n-bit bus. For
example, if the current value on the bus is 0000, and the next value to be transfered
is 0001, then the Hamming distance between the values is 1. Therefore, 0001 will be
transmitted over the bus with the invert bit set to 0, indicating the data is not inverted.
However, if the current value on the bus is 1111 instead, the Hamming distance between
the values is 3 and hence 1110 is transmitted with the invert bit set to 1. In this manner,
each information symbol in the n-bit input space maps to two codewords. The code-
word that minimizes switching activity on the interconnect is chosen for transmission
to reduce power consumption. Bus-invert is thus not a one-to-one mapping, i.e., it is not
a context-independent code. The bus-invert codewords for all the information symbols
on a 4-bit wide data bus are shown in column 2 of Table 1.

Many other context-dependent, double-ended codes have been proposed. One such
code is based on the use of a decorrelator, which XOR’s the data to be transmitted with
the previous value transmitted across the bus [15,16]. The receiver must then recover
the actual value by undoing the XOR operation. Further reductions can be achieved
by exploiting information about the frequency of occurrence of particular data values
on the bus. In [17], a decorrelator was combined with a one-hot encoding of the 32
most frequently occurring values. Like bus-invert, such frequent value encoding is still
a context-dependent, double-ended code because of the use of the decorrelator. The
transmitter first decides if the data value is one of the most 32 frequently occurring
values. If so, it is one-hot encoded. A one-hot code on a n-bit wide bus is a coding
scheme where exactly one out of n bits is set to one. At the word-level, 32 codewords
are available and hence 32 frequently occurring values can be encoded leaving the re-
maining values unencoded. �� Note that an additional bit is needed to indicate whether
or not the data is one-hot encoded to the receiver. The result of one-hot encoding is then
passed through the decorrelator prior to transmission across the bus. The receiver must
recover the actual value by undoing the XOR and one-hot encoding transformations.
The final column of Table 1 shows the one-hot codeword assignments, based on the
frequency distribution in column 4, for frequent value coding on a 4-bit wide data bus.
Note that only 4 most frequently occurring values (1101, 1001, 0111, 0100) are one-
hot encoded. In practice, these values would also be XOR’ed with the previous value

�� The reported code also ignored values 1-16 and performed equality tests before transmission,
the details of which are excluded for brevity [17]. Nevertheless, our experimental setup imple-
mented the best scheme reported in [17] that includes some of these features.
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Table 1. Comparison of Different Codes

Information Bus-invert 2-LWC
Frequency (%)

Freq.-based Freq.-based Freq. value
Symbols Coding [14] Code [13] remapping 2-LWC coding [17]

0 0000
0000 1 1111

0 0000 6.7 1001 0 0110 0 0000

0 00010001
1 1110

0 0001 5.6 0101 0 1010 0 0001

0 00100010
1 1101

0 0010 4.7 1011 1 1000 0 0010

0 00110011
1 1100

0 0011 6.9 1010 0 0011 0 0011

0 01000100
1 1011

0 0100 7.6 0100 0 0100 1 1000

0 01010101
1 1010

0 0101 7.0 1100 1 0000 0 0101

0 01100110
1 1001

0 0110 4.0 1101 1 0010 0 0110

0 01110111
1 1000

1 1000 8.1 0010 0 0010 1 0100

0 10001000
1 0111

0 1000 4.8 1110 0 1001 0 1000

0 10011001
1 0110

0 1001 8.4 0001 0 0001 1 0010

0 10101010
1 0101

0 1010 5.9 0011 0 1100 0 1010

0 10111011
1 0100

1 0100 4.0 0111 1 0100 0 1011

0 11001100
1 0011

0 1100 6.6 0110 0 0101 0 1100

0 11011101
1 0010

1 0010 8.5 0000 0 0000 1 0001

0 11101110
1 0001

1 0001 3.7 1111 1 0001 0 1110

0 11111111
1 0000

1 0000 7.5 1000 0 1000 0 1111

transmitted across the bus by the decorrelator. Like bus-invert, frequent value encoding
does not use a one-to-one mapping, as a particular data value can map to many encoded
values depending on the previous data transmitted across the bus.

4 Context-Independent, Single-Ended Codes

This section introduces and develops a class of context-independent, single-ended cod-
ing schemes for embedded applications. These coding schemes are split into two phases.
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During the first phase, a set of codewords is generated. In the second phase, each in-
formation symbol is assigned to a unique codeword. These assignments are determined
purely by frequency-based metrics without using any local context information. Such
codes have several advantages. First, they significantly lower power consumption on the
interconnect between the SoC and the memory modules. Second, they are single-ended,
i.e., they do not require the SDRAM to participate in the coding-decoding process. A
codec is only required in the memory controller on the SoC. Last, they have negligible
impact on performance during the coding-decoding process.

4.1 Limited-Weight Codes (LWCs)

One class of context independent codes that meet all the above requirements are limited-
weight codes (LWCs) [13]. Consider a k-bit wide data bus with 2k information symbols.
A m-LWC is a one-to-one mapping where every word in the 2k input space maps to
a codeword such that the Hamming weight (i.e., the number of ones in the codeword)
is less than or equal to m. Since the source entropy must remain unchanged, i.e., since
every information symbol must have a unique codeword, the following inequality must
be satisfied by all m-LWCs:(

n

0

)
+

(
n

1

)
+

(
n

2

)
+ · · · +

(
n

m

)
≥ 2k (1)

Here, n is the minimum number of bits (m ≤ n) such that the inequality is satisfied,
i.e, n determines the width of the bus needed to implement a m-LWC. Note that the
inequality is only satisfied when n ≥ k. A perfect m-LWC satisfies Equation 1 above
with equality, i.e., all the codewords of length n with weight less than or equal to m
are used in the mapping. For example, a 4-LWC where k equals 8 is a perfect 4-LWC
when the codeword bus width n equals 9. The information symbols and the correspond-
ing codewords for the perfect 2-LWC when k equals 4, obtained using the generation
technique presented in [13], are presented in columns 1 and 3 respectively in Table 1.

4.2 Frequency-Based Codes

Frequency-based codes are a class of codes where a context-independent mapping
between information symbols and codewords is achieved by assigning information
symbols that have the highest probability of occurrence to codewords with minimum
weight. As discussed in Section 3, one way to use frequency would be to one-hot encode
a small set of frequently occurring values at the word-level to achieve power savings.
However, such an approach does not use the codeword space efficiently since only 32
out of 232 values can actually be encoded by this scheme.

A more efficient way to use frequency is to remap information symbols to be trans-
mitted on the n-bit wide bus to codewords on a n-bit wide bus, i.e., through a permu-
tation. Such a remapping can be statically determined by an analysis of several traces
in the application space. The frequency distribution of information symbols from each
application could be used for that application, or the frequency distributions for a set
of applications could be combined to produce a global frequency distribution. The in-
formation symbols are then ranked in descending order of frequency of occurrence,
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and remapped to codewords in increasing order of weight. Thus, the information sym-
bol that occurs most frequently on the bus is remapped to the codeword with the least
weight. In practice, such a remapping would have to occur at the byte-level since word-
level remapping is impractical.

The frequency distribution given in Table 1 can be used to perform such a remap-
ping of the information symbols in the table. The information symbols and the corre-
sponding codewords for a frequency-based remapping of the 4-bit information space are
presented in columns 1 and 5 respectively in Table 1. The frequency distribution used
to generate this remapping is presented in column 4 in the same table. For example,
1101 which is the most frequently occurring information symbol would be remapped
to 0000.

4.3 Frequency-Based m-LWCs

The biggest handicap of m-LWCs is that the one-to-one mapping is statically deter-
mined without any knowledge of the characteristics of the input space. The main contri-
bution of this paper is to combine the advantages of frequency-based codes with LWCs
to produce a context-independent single-ended mapping. By combining m-LWCs with
frequency-based coding, the distribution of information symbols is analyzed to produce
a context-independent mapping that, while statically determined, exploits an a priori
knowledge of the distribution of information symbols. Frequency-based m-LWCs thus
leverage the advantages of both frequency-based coding and limited-weight coding. It
is a departure from conventional types of codes that seek to explicitly minimize tran-
sitions using the state of the bus. The generation of the codewords is separated from
the mapping process, and the best of both techniques is harnessed to realize practical
context-independent single-ended codes.

The frequency-based mapping encodes information symbols with the highest fre-
quency of occurrence to LWC codewords with the least weight. A simple frequency-
based mapping from a 2-LWC to a 4-bit information space, using the frequency distri-
bution in column 4 of Table 1 is presented in column 6 of the same table.

5 Memory Controller Architecture

Figure 2 shows the architecture of a memory controller for embedded systems. As the
figure shows, memory requests arrive on the system bus. At this point, if the memory
request is a write, the data will be encoded by the context-independent encoder before
it is placed in a queue within the memory controller. The SDRAM controller within
the memory controller then issues the appropriate commands to the SDRAM in order
to satisfy each pending request in the queue. Finally, if the memory operation is a read
from the SDRAM, the data can be decoded by the context-independent decoder before
being returned to the core over the system bus.

A context-independent codec does not need to be near the pins. Rather, the data
can be encoded and decoded anywhere within the memory controller because only the
actual data being encoded or decoded is needed to perform the encoding or decoding.
This makes it convenient to encode write data before it is placed in the memory queue,
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Fig. 2. Memory controller architecture for embedded systems

thereby minimizing any latency penalties. It is entirely possible that the latency of en-
coding write data can be hidden by long latency SDRAM operations that must occur
before the data can cross the pins anyway. Similarly, read data can be decoded as it is
sent to the system bus. Again, the decoding latency could possibly be hidden by arbitra-
tion delays for the system bus. For the 30 benchmark programs from the MiBench suite
that will be explored in Section 7, an extra cycle latency penalty for decoding results in
less than a 0.1% performance penalty on average.

A context-independent codec can be implemented in multiple ways. In the most
general case, such as frequency-based coding, a lookup-table is the most efficient mech-
anism. To encode or decode bytes, a 256-entry table would be required with either 8 or
9 bit entries, depending on the code. For performance, it is likely that multiple identi-
cal tables would be required, one for each byte that can be transferred on the system
bus in a given cycle. If the code is fixed, then the lookup-tables can be compact ROM
tables. To provide the flexibility to change the code, however, it is likely that the lookup-
tables would have to be SRAM structures. Combinational logic can be used to imple-
ment more regular context-independent codes. For example, the limited-weight code
described in [13] could be implemented using a simple population count and possible
inversion.

Finally, many of the codes discussed here increase the size of the data by adding an
additional bit for every byte. This would increase the datapath width of the memory con-
troller, the width of the processor-memory interconnect, and the width of the SDRAM.
Obviously, this additional bit can increase power consumption, but the objective of
these codes is to reduce power consumption by limiting the number of transitions, so
usually this is not an issue in the memory controller or the processor-memory intercon-
nect as will be shown in Section 7 (all results include the transitions on this additional
wire, as appropriate). However, widening the SDRAM is potentially problematic. Many
SRAMs designed for embedded systems have 9-bit bytes. And Samsung is starting to
introduce SDRAMs of that nature, as well [18]. The wider Samsung SDRAMs consume
6–8% more current than their normal counterparts. However, this is assuming a regular
data pattern. In practice, the reduction in switching activity achieved by these codes can
more than offset this increase.
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6 Simulation Infrastructure

The coding techniques presented here were evaluated using the SimpleScalar/ARM
simulator [19]. The simulator was configured to closely match the Intel Xscale proces-
sor [20]. The Xscale can fetch a single instruction per cycle and issues instructions
in order. Branches are predicted with a 128 entry branch target buffer and a bimodal
predictor. The instruction and data caches are each 32 KB and have a single cycle ac-
cess latency. The caches are configured as 32-way set associative and use a round-robin
replacement policy. SimpleScalar was also modified to incorporate a cycle accurate
SDRAM model so that all SDRAM accesses occur as they would in an actual system.

The SDRAM simulator accurately models the behavior of the memory controller
and the SDRAM. The SDRAM model simulates all timing parameters, including com-
mand latencies, all required delays between particular commands, and refresh intervals.
The memory controller within the simulator obeys all of these timing constraints when
selecting commands to send to the SDRAM, thereby accurately representing the se-
quence of data transferred over the processor-memory interconnect. The simulator is
configured to model a 75 MHz, 512 Mb Micron MT48LC32M16A2-75 single data rate
SDRAM [21].

The bit transitions on the interconnect for the encoded and unencoded data transfers
was calculated as the SDRAM is accessed. This faithfully models the bit transitions that
would occur on the data bus in the appropriate order.

The MiBench embedded benchmark suite was used to evaluate the proposed coding
techniques [22]. Thirty applications are used from the suite with their large input sets.
While still small, the large inputs are more representative of actual workloads. The
applications span the automotive, consumer, networking, office, security, and telecomm
domains.

7 Results

Table 2 shows the average reduction in transitions on the processor-memory intercon-
nect for nine coding strategies when compared with the baseline uncoded case. The

Table 2. Average reduction in transitions

ReductionCode
(%)

Context-dependent Bus Invert 21.8
Double-ended Self FV32 with Decorrelator 38.7

Self FV32 17.8
Self FV8 15.5
4-LWC 13.9Context-independent
Self 8-LWC 28.2Single-ended
Global 8-LWC 22.4
Self 4-LWC 30.3
Global 4-LWC 25.1
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first two codes in the table are context-dependent, double-ended codes. As described
in Section 3, bus invert coding is the simplest and most popular such code, and FV32
with a decorrelator one-hot encodes the 32 most frequently occurring values (for each
benchmark) and uses a decorrelator to significantly reduce switching activity. As the
table shows, both context-dependent, double-ended codes perform quite well, reducing
transitions on the interconnect by 21.8% and 38.7%, respectively.

The remaining seven codes are all context-independent, single-ended codes that can
be implemented entirely within the memory controller without specialized SDRAM.
FV32 and FV8 simply one-hot encode the 32 most frequently occurring word values or
the eight most frequently occurring byte values to form a code as presented in Table 1.
These codes are labeled “self”, as each benchmark uses the most frequently occurring
values from that benchmark. As the table shows, these codes perform poorly, yielding
only a 17.8% and 15.5% reduction in switching activity. Therefore, such a one-hot
encoding strategy relies heavily on a context-dependent, double-ended decorrelator to
reduce transitions on the interconnect.

4-LWC is the original limited-weight code, presented in Section 4, which uses nine
bits per byte to encode all byte values with at most four bits set. This code reduces
switching activity by 13.9% on average.

The final four limited-weight codes use the frequency-based assignment scheme
presented in this paper. “Self” and “Global” refer to whether each benchmark’s own
frequency distributions were used to assign codewords for that benchmark or all bench-
marks used the same codewords derived from the frequency distributions of all bench-
marks. The 8-LWC codes use eight bits to encode each byte, with up to eight bits set,
yielding a simple remapping. The 4-LWC codes again encode each byte using nine bits
with at most four bits set. As the table shows, these codes are able to reduce transi-
tions on the interconnect by 22.4–30.3% on average. As would be expected, the codes
which use the frequency distributions for each benchmark individually yield higher re-
ductions, by about 5–6%. These results show that when using limited-weight codes, the
assignment strategy is critical. Furthermore, the penalty of using an extra wire for the
4-LWC codes is more than offset by the effectiveness of such codes (the results include
the switching on the additional wire).

8 Conclusions

State-of-the-art coding techniques to reduce power consumption across the processor-
memory interconnect have traditionally used context-dependent, double-ended tech-
niques. This requires specialized memory that can participate in such codes. This paper
introduced viable context-independent, single-ended codes that are competitive with
these state-of-the-art codes, but can be used with commodity memory.

The proposed codes are effective at reducing power without degrading performance
for thirty applications from the MiBench embedded benchmark suite with their large
input sets. Frequency-based remapping codes require no augmentation to the memory
bus or modules. These codes reduce the transitions of the uncoded data stream by 28.2%
on average, and minimally impact performance (by less than 0.1% on average) across
the set of thirty benchmark programs. Frequency-based 4-LWCs reduce the transitions
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of the uncoded data stream by 30.3% on average, improve on context-dependent double-
ended bus-invert codes by 10.9% on average, and minimally impact performance (by
less than 0.1% on average) across the set of thirty benchmark programs.

This paper has shown that both the type of code used and the assignment scheme for
that code are important. Limited-weight codes by themselves are ineffective. Similarly,
using frequency information without limited-weight codes yields an inefficient code
that is also ineffective. However, using frequency information to assign limited-weight
codes minimizes transitions to a greater extent than any other context-independent,
single-ended code. Furthermore, such codes sometimes outperform context-dependent,
double-ended codes that cannot be used with commodity SDRAMs. Since embedded
systems continue to use commodity memories and the processor-memory interconnect
is a dominant consumer of power in such systems, the coding techniques presented here
can significantly improve the overall power efficiency of modern embedded systems.
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Abstract. We propose a novel hardware-based DVS technique called dynamic
processor throttling (DPT) for power efficient computations. DPT focuses on the
performance balance between the processor and main memory. When a perfor-
mance imbalance is detected, DPT tries to redress the imbalance by setting the
clock frequency and supply voltage of the processor to a well-balanced point.

This paper describes the micro-architecture mechanisms of DPT and shows
the evaluation results on energy saving and performance compared with a con-
ventional cache-miss-driven DVS technique. The results reveal that DPT can re-
duce 17% of the energy with a 3.4% performance degradation and DPT surpasses
the conventional technique in both performance and energy.

1 Introduction

Reducing power/energy consumption has become a crucial issue for not only battery
powered and embedded processors but also high performance microprocessors because
power and thermal problems are certainly a key factor in limiting processor perfor-
mance. To satisfy the power/thermal constraint of a chip, low-power architectural tech-
niques are indispensable especially for future microprocessors.

Dynamic Voltage Scaling (DVS) has become attractive for high-performance and
low-power computing. DVS selectively scales down the supply voltage during compu-
tations if the processing demand is not heavy. Because dynamic power consumption in
a CMOS circuit scales quadratically with the supply voltage, a significant amount of
power is saved by lowering the supply voltage. However, lowering the voltage degrades
the speed of the circuit, and thereby the clock frequency must be lowered, which has a
negative impact on performance.

Much DVS-related research has been carried out for power saving. In real-time
systems especially, many techniques have been well studied [1, 2, 3, 4] to exploit the
excessive computation power and to scale down the supply voltage under the constraint
of a time deadline. Another approach is scaling down the supply voltage when the
processor is likely to stall due to a cache miss. Because the performance gap between
the processor and main memory is very large, processors waste significant amounts of
time while waiting for data from the main memory. The performance penalty due to
low clock frequency can be masked by the stall time. Therefore, this approach has a
significant opportunity for power/energy saving without performance degradation.
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In such a DVS method, the application behavior is analyzed and the voltage is con-
trolled either by the compiler [6, 11] or the hardware (micro-architecture) [7, 8, 9]. In
compiler-based approaches, compilers statically identify the program regions where
the performance does not degrade, even if the clock frequency is lowered. However,
the static analysis does not predict perfectly the behavior of the programs. For exam-
ple, cache behavior is difficult to analyze because it is affected by the data set of pro-
grams. On the contrary, hardware-based approaches can capture the dynamic behavior
of program execution. Therefore, a micro-architectural approach is more attractive for
a memory-bound-based DVS method.

In the hardware-based approaches, the cache-miss-driven methods proposed in [7,
8] have been well studied. They lower the supply voltage when L2 cache misses occur
and switch the voltage back to high when one of the outstanding misses returns. In this
paper, we propose a different hardware-based DVS technique called Dynamic Proces-
sor Throttling (DPT), which detects the performance imbalance between the processor
and main memory and redresses the balance. DPT tries to balance the throughput of a
processor with that of the main memory by setting the clock frequency and supply volt-
age of the processor. When the memory performance dominates the execution time, the
throughput of the processor is balanced by lowering the processor’s frequency. Because
the throughput balance dynamically changes within a program, its execution is divided
into several time intervals and the frequency and voltage are reset at every interval. DPT
is superior to conventional cache-miss-driven methods in the following aspects.

– Energy consumption is further reduced by setting the clock frequency and supply
voltage at the balanced point.

– Because voltage switching is less frequent than cache-miss-driven methods, the
performance and energy overheads are suppressed.

Due to the above points, DPT has the potential to save more energy with less perfor-
mance penalty than conventional methods.

In DPT, the most important issue is how to detect the performance imbalance be-
tween the processor and main memory. Instructions Per Cycle (IPC) is one way because
IPC is the simplest indicator of processor activity. In our studies, however, IPC does not
always reflect the imbalance. Therefore, we propose another method for detecting the
performance imbalance.

This paper is organized as follows. The next section describes the related work.
In Section 3, we propose our DPT method and compare it with a miss-driven DVS
technique. Section 4 describes the evaluation methodology and assumptions. The results
are presented in Section 5. Finally, we conclude in Section 6.

2 Related Work

The DVS techniques have been well studied and adopted in several commercial proces-
sors so far.

Marculescu [7] proposed the cache-miss-driven DVS technique in which the sup-
ply voltage is lowered when the processor detects L2 cache misses. Li et al. [8] pro-
posed Variable Supply-Voltage scaling (VSV), which is an extension of the cache-miss-
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driven method. In this work, the performance penalty and energy overhead of the fre-
quency/voltage transition are taken into consideration. Moreover, the voltage scaling
is controlled with monitoring instruction level parallelism (ILP). VSV does not scale
down the supply voltage when ILP is high because significant performance loss would
ensue from lowering the voltage for such a program region.

These methods reduce power/energy consumption by scaling down the supply volt-
age when the processor stalls and waits for data from the main memory. Although the
basic concepts of these methods are similar to our DPT, DPT focuses on the imbalance
of the processor and main memory performance and tries to balance them with each
other. Thus, this paper shows that DPT is a more energy-efficient solution with less
performance penalty.

Stanley-Marbell et al. [9] proposed the Power Adaptation Unit (PAU), which is used
to control the operating voltage of various system components such as CPU. The PAU
scales the supply voltage to reduce power consumption without incurring more than a
prescribed performance penalty. PAU attempts to identify dynamic program regions for
voltage scaling, including regions with an imbalance in memory and CPU activity. How-
ever, PAU relies on a table which keeps track of the program execution status to determine
the program regions. It may incur large energy overhead. Moreover, the case of an out-
of-order superscalar processor is not evaluated. On the other hand, our DPT needs a very
simple hardware structure only and our target is out-of-order superscalar processors.

Besides micro-architectural DVS techniques, there have been proposed several
methods that optimize the supply voltage for a given program in the compilation phase
by static compiler analysis or profiling [6, 11]. These methods statically identify the
program regions where the performance does not degrade even if the clock frequency
is lowered. However, it is difficult to completely analyze the behavior of the program
execution, especially cache performance, statically because it is affected by the data set
of the program. On the contrary, hardware-based approaches can capture the dynamic
behavior of the program execution.

The DVS method can be applied more finely for Multi Clock Domain (MCD) micro-
architecture [12, 13, 14]. It divides an entire processor chip into individual clock do-
mains using the globally asynchronous locally synchronous (GALS) technique. There
is the possibility of further reduction of power consumption by this fine-grain opti-
mization. This work, however, does not consider the performance imbalance between
the processor chip and main memory as much. Our proposed method is orthogonally
applied to their MCD architecture.

Sasanka et al. [4] proposed an energy-driven architecture adaptation method for
multimedia applications. This method adapts the voltage setting and architectural struc-
ture, including the instruction window size, to the time deadline and other requirements
of applications. However, it relies on the characteristic of multimedia applications, that
is, frame-based computation. On the contrary, our target is more general applications.

Bahar and Manne [5] proposed Pipeline Balancing (PLB), which dynamically tunes
the resources of a processor to the needs of a program. PLB monitors IPC variations to
determine when to enter or exit the low-power mode. In the low-power mode, the issue
rate is reduced to disable some processor resources. In their work, however, DVS is not
considered.
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Fig. 1. Power consumption for three processors

3 Dynamic Processor Throttling: DPT

3.1 Overview of DPT

We propose a micro-architectural method called Dynamic Processor Throttling (DPT)
which detects a performance imbalance between the processor and main memory, and
adjusts the processor’s supply voltage and clock frequency to redress the balance. Un-
like the cache-miss-driven DVS method, which alternately uses two supply voltages,
DPT chooses a supply voltage from several setting points.

Fig. 1 illustrates an example of the power consumption of three processors: an
original processor without DVS (Original), a cache-miss-driven DVS processor (Miss-
Driven), and our proposed DPT processor (DPT). In this figure, we assume the instruc-
tions are issued out-of-order, the cache is non-blocking, and one cache-miss request
(that is, the data transfer between the processor and main memory) can be served at a
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moment. We also assume that perfect clock gating is applied so that no power is con-
sumed in the stall period.

In the Original scenario, the processor continues to execute instructions even after
the cache misses, but it stalls when none of the following instructions can be issued
further because of the dependency on missed data. When the data becomes available,
then its execution is resumed. In the Miss-Driven, two supply voltages, referred to as
high-Vdd and low-Vdd, are used and the processor scales down the supply voltage to
low-Vdd when it detects a cache miss. When an outstanding miss returns, the processor
switches back to high-Vdd. Therefore, the stall period is reduced and total energy con-
sumption is saved compared with the Original. In our DPT, the processor scales down
the supply voltage for a certain period of time when it detects a throughput imbalance
between the processor and main memory.

DPT tries to balance the throughput of the processor with that of the main memory
by setting the clock frequency and supply voltage of the processor. When the memory
performance dominates the execution time, the throughput of the processor is balanced
by lowering its frequency. Because the throughput balance changes within a program,
the execution of a program is divided into time intervals and the frequency and volt-
age are adjusted at every interval. DPT is superior to conventional cache-miss-driven
methods in the following aspects.

– Energy consumption is further reduced by setting the clock frequency and supply
voltage at the balanced point.

– Because voltage switching is less frequent than cache-miss-driven methods, the
performance and energy overheads are suppressed.

As for the first aspect, Ishihara and Yasuura [1] proved that total energy consump-
tion is minimized if the processor uses a single supply voltage which fits the execu-
tion time just with the given time constraint. This result is extended to our situation.
By selecting a clock frequency and supply voltage from several setting points at a
balanced point, less energy is consumed compared with switching between high-Vdd
and low-Vdd. Suppose the high-Vdd and low-Vdd settings are 1.6 V with 1.8 GHz
clock frequency and 0.8 V with 0.6 GHz clock frequency, respectively, as shown in
Fig. 1. Then, the energy consumption for the execution related to one cache-miss res-
olution becomes 2 × 1.62 × α in Original, whereas is is (1 × 1.62 + 3 × 0.82) × α
in Miss-Driven. Consequently, 13% of the energy is reduced in Miss-Driven compared
with Original. In DPT, if the balanced Vdd setting is 1.0 V with 0.9 GHz clock fre-
quency, the energy consumption is about (4 × 1.02) × α. Therefore, the energy con-
sumption is further reduced by 11% compared with Miss-Driven without performance
penalty.

As for the second aspect, the supply voltage transition is less frequent in DPT than
in Miss-Driven. Because performance and energy penalties for switching the clock fre-
quency and supply voltage are not negligible, DVS methods should be carefully de-
signed to take into account these penalties. DPT uses a balanced voltage setting for
a certain period of time, whereas Miss-Driven can change the supply voltage at ev-
ery cache miss or cache-miss resolve. Therefore, DPT is robust with respect to these
penalties. The circuit issues for these penalty are discussed in Section 3.3.
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3.2 Algorithm of DPT

The DPT algorithm consists of the following three parts: (1) detection of a performance
imbalance, (2) prediction of a performance imbalance, (3) adjustment of the supply
voltage and clock frequency. The algorithm is based on an interval-based approach, as
illustrated in Fig. 2. In this section, we describe how to detect the throughput imbalance
between computation and data transfer, how to predict it for future execution, and how
to adjust the supply voltage and clock frequency for each time interval. We assume the
following memory hierarchy in our explanation.

– The processor has L1 data and instruction caches and an L2 unified cache.
– All the caches are on the processor chip.
– The processor supports non-blocking caches.
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Fig. 2. Interval-based approach

Detecting a Performance Imbalance. The simplest way to estimate the activity of the
processor is to use the IPC, as in Pipeline Balancing [5]. When frequent cache misses
occur, the IPC of the processor decreases. Therefore, the load of the main memory or
the load of the data transfer is estimated as high if the IPC is low. However, the IPC
depends on not only on the load of the main memory but also on the instruction level
parallelism (ILP) of a program. For example, if the IPC is limited by the dependencies
of non-memory-access instructions, the IPC is quite low but the processor is still busy.

Fig. 3(a) shows the relationship between performance degradation and IPC when
the frequency of the processor is lowered from 1.6 GHz to 1.4 GHz for every 50000
committed instructions in all programs of the SPEC CPU2000 benchmark suite. The
evaluation environment is described in Section 4.1. As seen in this figure, performance
degradation is not closely correlated to the IPC. Performance degradation is observed
even in low IPC. Therefore, IPC does not always reflect the performance imbalance
between the processor and main memory.

Instead of the IPC, we propose a new method to detect the performance imbalance
between the processor and main memory. The performance balance between the pro-
cessor and main memory is estimated based on cache-miss information or more specif-
ically, the number of on-going cache-miss requests. In non-blocking caches, there exist
several on-going cache-miss requests at a moment, and they are handled by memory in-
dependently of processor execution. In this situation, the number of existing cache-miss
requests can be considered as the load of data transfer from and to main memory. Then,
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Fig. 3. Performance degradation

if multiple cache-miss requests always exist, memory performance is not sufficient for
processor performance. This is the imbalance between the processor and memory per-
formance to be tackled by our DPT. Thus, performance imbalance is detected based on
the number of existing cache-miss requests. Since main memory accesses are invoked
by L2 cache misses in the assumed memory hierarchy, the performance imbalance is
detected by watching the L2 cache-miss information.

In the detection, we introduce a status register named RegL2m, which keeps track of
the number of existing cache-miss requests including write-back. The value of RegL2m

is incremented if an L2 cache miss or an L2 cache write-back occurs. When one of
these requests is completed, the value is decremented.

In addition to RegL2m, three counters named Cnt0, Cnt1, and Cnt2 are intro-
duced. In every cycle, the counters of Cnt0, Cnt1, and Cnt2 are incremented when the
value of RegL2m is 0, 1, and more than 2, respectively. By referencing these counters,
the distribution of the existence of the number of cache miss requests can be calculated.
Using these counters, we quantify the load factor of data transfer (Mload) using the
following equation.

Mload = (w2 × Cnt2) + (w1 × Cnt1) + (w0 × Cnt0) (1)

Here, wn indicates the weight value for each Cntn.
Fig. 3(b) presents the relationship between performance degradation and average

Mload per cycle using the same measurement as in Fig. 3(a). We assume that the weight
values of w2, w1, and w0 are 2, 1 and -1, respectively. As seen from the figure, perfor-
mance degradation is almost linearly correlated to Mload. This indicates that Mload

well reflects the performance imbalance between the processor and main memory.

Predicting Performance Imbalance. The performance imbalance between computa-
tion and data transfer is predicted by using Mload. Let Titvl be the time interval for
changing the supply voltage and clock frequency. We calculate Mload for every Titvl

period.
The current value of Mload (in other words, the load factor of the data transfer in

the current Titvl period) is used for predicting the next period of the load of the data
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transfer. The setting for the next interval is determined by this current load value. If
Mload is high, the load of the data transfer in the next Titvl period is predicted as high.
If the value is low, the load in the next period is predicted as low.

Note that the three counters, Cnt0, Cnt1, and Cnt2, are reset at the start point of
every time interval.

for each cycle {
if (RegL2m == 0) Cnt0++;
elseif (RegL2m == 1) Cnt1++;
else Cnt2++;
/* for every Titvl */
if ((CycleCount % Titvl) == 0){

Mload = (w2 × Cnt2) + (w1 × Cnt1) + (w0 × Cnt0)
if (Mload > Thu)

DownV oltage();
elseif (Mload < Thl)

UpV oltage();
else

/* UnchangingV oltage */;
Cnt0 = Cnt1 = Cnt2 = 0;

}
CycleCount + +;

}

Fig. 4. Algorithm of DPT

Adjusting the Supply Voltage and Clock Frequency. By using the predicted load
of the data transfer, the processor supply voltage and clock frequency are adjusted at
each start point of the time intervals. We introduce two threshold values, Thu and Thl,
which indicate the upper threshold and lower threshold, respectively. The two threshold
values are used to avoid thrashing between two voltage settings. At every starting point
of Titvl, the voltage setting is raised by one level if Mload exceeds Thu and is lowered
by one level if Mload is below Thl. The setting is not changed if the value is between
Thu and Thl.

We summarize the entire DPT algorithm in Fig. 4.

3.3 Circuit Issues

First, we discuss the additional hardware to realize the DPT algorithm. DPT requires
only one register (RegL2m), three counters (Cnt0, Cnt1, and Cnt2), two adders and
three multipliers for calculating expression (1). Here, if simple values are selected as
the weight values (2, 1, and -1 are used in the evaluation), a simple shifter or nothing
is required for the multiplication. Comparators between Mload and Thu/Thl are also
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required but a small number of bits are enough. Thus, DPT implementation does not
affect power consumption.

Next, we consider the circuit issues required for switching the clock frequency and
supply voltage. Conventional processors with DVS use a dynamic DC-DC converter to
change the voltage level. One drawback of a DC-DC converter is that it requires quite
a long time for voltage ramping. To suppress this penalty on performance, VSV [8],
which is one of the L2-miss-driven techniques, adopts dual power supply networks in-
stead of using the DC-DC converter. However, dual power supply networks have two
disadvantages, area overhead and a restriction on voltage choice (only two voltage alter-
natives are available). On the other hand, because voltage switching is less frequent in
DPT, it does not lead to performance degradation even if a DC-DC converter is adopted.
Thus, we use a DC-DC converter in DPT. Therefore, DPT is free from the problems of
area overhead and the restriction on voltage choice.

As for the energy overhead, a varying supply voltage changes the amount of charge
held in the CMOS circuits, as stated in [10]. Because RAM structures contain a number
of cells, the energy overhead due to charging/discharging the cells is too large to be
amortized. Therefore, VSV does not scale the supply voltage of large RAM structures
such as the cache or register file. On the other hand, in DPT, we also scale the supply
voltage for large RAM structures. Because voltage switching is less frequent and the
difference of voltage levels before and after switching is small, the energy overhead is
small even if the supply voltage of all the RAMs changes. Thus, DPT can save power
consumption for such RAM accesses.

4 Experimental Setup

4.1 Experimental Methodology

Power consumption and the performance of DPT is evaluated and compared with the
original non-DVS model (called original here) and miss-driven DVS model (called
miss-driven). The effect of the performance imbalance detection method is also evalu-
ated. We use the SimpleScalar Tool Set [15] for our base simulation environment. Since
an accurate simulation of the memory hierarchy is required in the evaluation, we use
SimpleScalar augmented with a memory hierarchy extension (SimpleScalar with Mem-
ory Extension) [16]. For estimating power consumption, we incorporate the Wattch [17]
extension into the environment.

The miss-driven is based on VSV [8] in this evaluation. The supply voltage is
changed from high-Vdd to low-Vdd when an L2 cache miss occurs and it is switched
back to high-Vdd when all the misses return. The ILP monitoring mechanism is not
supported in this evaluation. To avoid a large performance penalty and energy overhead
in the voltage transition, it is assumed that a dual power supply network is adopted
and high-Vdd is always used for the large RAM structures (caches and register file), as
suggested in [8].

We use all the programs from the SPEC CPU2000 benchmark suite using the ref
input set. The programs are compiled for Alpha instruction set architecture (ISA). We
fast-forwarded two billion instructions and simulated 500 million instructions.
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4.2 Assumption

Table 2 shows the assumptions of the processor configuration for the evaluation. The
supply voltage and the clock frequency used here follow those of the Intel Pentium
M processor shown in Table 1. In DPT, the supply voltage and clock frequency were
selected from six setting points of Table 1. For miss-driven, the highest and lowest
settings of Table 1 were used for high-Vdd and low-Vdd respectively.

The following values are used for the parameters of the DPT algorithm described in
Section 3.2.

– Titvl: 100000 cycle
– Thu: 130000, Thl: 100000
– w2 = 2, w1 = 1, w0 = −1

We incorporate a performance penalty and energy overhead for the frequency/
voltage transition into the evaluation. According to the data-sheet of the Intel Pentium
M processor[18], the processor core is unavailable for up to 10μs during frequency
ramping. We pessimistically assume 20μs of penalty for a frequency and voltage tran-
sition in DPT. The energy overhead of a transition in DPT is assumed to be 20μJ with
consideration of both the charge/discharge of the CMOS circuits and DC-DC converter.
For the miss-driven DVS, we optimistically assume that the performance penalty and

Table 1. The combinations of supply voltage and clock frequency on an Intel Pentium M

Processor Clock 1.6 GHz 1.4 GHz 1.2 GHz 1.0 GHz 800 MHz 600 MHz
FSB Clock 400 MHz 400 MHz 400 MHz 400 MHz 400 MHz 400 MHz
Memory Bus Clock 266 MHz 266 MHz 266 MHz 266 MHz 266 MHz 266 MHz
Processor Core Vdd 1.484 V 1.420 V 1.276 V 1.164 V 1.036 V 0.956 V

Table 2. Processor configuration

Fetch width 8
Branch prediction gshare 4K entry
BTB 1024 sets, 4-way
Mis-prediction penalty 3 cycles
RUU size 128
LSQ size 64

Int: 6 ALU, 2 mult/div, FP: 6 ALU 4 mult/divFunctional units
Load/Store: 2 memory ports
32 KB, 32 B line, 2-wayL1 instruction-cache
1 cycle latency
32 KB, 32 B line, 2-wayL1 data-cache
2 cycle latency
512 KB, 64 B line, 8-wayL2 cache
10 cycle latency

Bus width 8 B
Main Memory latency 50 ns
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energy overhead for a frequency/voltage transition are 10ns and 22.3nJ respectively,
which is quite favorable for a miss-driven DVS.

5 Evaluation Result

5.1 Comparison Between Miss-Driven DVS and DPT

Fig. 5 shows the relative execution time and relative energy consumption of the DPT
and miss-driven normalized to the original non-DVS model. The execution time shown
in Fig. 5(a) is decomposed into seven parts. Six parts correspond to the time executed
in the six different processor clock frequencies, and the other part represents the time
penalty required for changing the supply voltage level. Programs are sorted in the order
of the L2 cache-miss rate (programs with higher L2 miss rates are located on the left
side). In Fig. 5(b), each bar is decomposed into two parts: the energy for program exe-
cution and the additional energy overhead for voltage transitions. Note that the results
for programs whose L2 cache-miss rate is smaller than 0.1% are not shown in Fig. 5
because the performance and energy consumption of DPT and miss-driven for such

(a) Performance

(b) Energy consumption

Fig. 5. Results on SPEC2000 programs. In the figure, labels of “a” and “b” represent DPT and
miss-driven, respectively.
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programs are close to those of the original processor. The mean bars shown on the far
right side of the figure indicate the mean value across all of the SPEC2000 programs.

First of all, we discuss the impact on performance. By averaging all the programs,
3.4% and 11% performance degradation is observed in DPT and miss-driven, respec-
tively. In most of the programs, DPT outperforms miss-driven in performance. This
result is derived from the following two observations. First, the execution time of DPT,
excluding the penalty, is shorter than that of miss-driven except for mcf, apsi and
gcc. Second, the penalty of DPT is smaller than miss-driven except for gcc. The rea-
son for the first observation is that the miss-driven processor uses only two kinds of
clock frequencies (1.6 GHz and 0.6 GHz), whereas the DPT processor uses six kinds of
frequencies. The miss-driven often selects the lowest clock frequency, but the frequency
is sometimes too low and the instructions in critical passes are delayed. On the other
hand, because DPT successfully sets the clock frequency stably at the balanced point
between the processor and main memory for a time interval, performance degradation
is mitigated. This reasoning is supported by the fact that intermediate frequencies are
often selected in DPT, as shown in Fig. 5(a).

The reason for the second observation is the frequency of the voltage transition.
Table 3 presents the number of voltage transitions for both methods. Because the num-
ber of voltage transitions in DPT is quite small, the penalty is suppressed even though
the time loss for one voltage switching in DPT is four orders of magnitude longer than
that of miss-driven. This suggests that the voltage transition should be triggered not by
specific events but by capturing the execution status for a certain period.

Next, we discuss the results of energy consumption. Both miss-driven and DPT save
a significant amount of energy in the programs with a high L2 cache-miss rate (greater
than 5%) except for lucas. Because the processor wastes a lot of time in waiting for
data from the main memory in these programs, energy consumption is reduced with little
performance degradation by lowering the supply voltage. For example, DPT saves 61%
and 53% energy with 1% and 3.5% performance penalty in art and mcf, respectively.

Comparing the energy consumption of DPT with that of miss-driven, the energy
consumption is further reduced in DPT in most of the applications with a high cache-

Table 3. The number of voltage transitions

art mcf lucas ammp swim applu apsi
DPT 5 1290 27 755 639 125 54
miss-driven 575373 1708023 14601666 23569591 4422766 8086547 574946

mgrid gcc facerec twolf vpr sixtrack wupwise
DPT 72 6225 652 0 2 4 0
miss-driven 4606348 9082303 5528369 6883742 5372244 1569380 973562

parser bzip2 gap mesa vortex crafty gzip
DPT 514 475 0 22 36 0 0
miss-driven 2781574 2134300 1474962 416284 617372 208472 98486

galgel equake eon fma3d perlbmk - -
DPT 0 0 0 0 0 - -
miss-driven 39294 26274 2400 844 204 - -
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miss rate. This indicates that energy consumption is further minimized by setting the
supply voltage at the balanced point than by frequently switching the high and low volt-
ages. For some programs (twolf, vpr, sixtrack, wupwise, bzip2, and
gap), miss-driven seems to save more energy than DPT. However, this is achieved at
the sacrifice of performance. As for the energy overhead due to voltage transitions, be-
cause the number of transitions in DPT is much smaller than that that in miss-driven,
the overhead is much reduced. On average, the energy saving for DPT reaches 17%
while that of miss-driven is 11%.

Because DPT is superior to miss-driven both in performance and energy, DPT is
more efficient than miss-driven for reducing energy consumption with only a little per-
formance degradation. Although the performance degradation in miss-driven can be
mitigated by raising the voltage level of low-Vdd or by applying the ILP monitoring
mechanism suggested in [8], it always leads to the loss of opportunities for energy
saving. Thus, these evaluation results indicate that balancing throughput between the
processor and main memory is a very promising way to low-power computing.

5.2 Effect of Performance Imbalance Detection Method

To examine the effect of the performance imbalance detection method, we compare
DPT with the IPC-based DVS method (hereafter denoted as IPC-based). The algorithm
of IPC-based is the same as DPT except for performance imbalance detection; that is,
IPC is used to estimate the imbalance.

Fig. 6 and Fig. 7 present the performance degradation and energy saving of DPT
and IPC-based compared with the original non-DVS processor on average across all the
SPEC2000 programs. Three kinds of upper and lower threshold pairs are evaluated for

Fig. 6. Performance degradation of DPT and IPC-based

Fig. 7. Energy saving of DPT and IPC-based
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each detection method. The upper and lower threshold values (upper–lower) of T small,
Tmiddle, and T large are 110000–70000, 130000–100000, and 150000–130000, re-
spectively, for DPT and 0.7–0.5, 0.5–0.3, and 0.3–0.1, respectively, for IPC-based.

Comparing DPT with IPC-based in the threshold of T small or Tmiddle, DPT
saves more energy than IPC-based, even though the performance degradation of DPT
is less than IPC-based. As for the case of T large, though the performance degrada-
tion of DPT is almost the same as IPC-based, the energy saving of DPT is twice as
much as that of IPC-based. Because Mload used in DPT well reflects the load of the
main memory as shown in Section 3.2, a large amount of energy is saved with a small
performance penalty compared with IPC-based. Therefore, it is concluded that the pro-
posed performance imbalance detection method is superior to the IPC-based detection
method.

6 Concluding Remarks

This paper proposed a hardware-based DVS technique called Dynamic Processor Throt-
tling (DPT) for power efficient computations. DPT reduces the power/energy consump-
tion by detecting the performance imbalance between the processor and main memory
and adjusts the processor supply voltage and clock frequency to redress the imbalance.
A method to detect the imbalance was also proposed.

We evaluated the effect of power saving and the impact on performance by using
the SimpleScalar framework and SPEC CPU2000 benchmark programs. The evaluation
results revealed that the proposed DPT can reduce more energy with less performance
degradation compared with the miss-driven approach. In DPT, 17% of the energy con-
sumption is reduced with 3.4% performance degradation. We also evaluated the effect
of the performance imbalance detection method. It is revealed that DPT can estimate
the load of the main memory more accurately than the IPC-based detection method.
From these evaluation results, it is concluded that DPT is very effective for low-power
computing.
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Abstract. Dynamic voltage scaling (DVS) allows a program to execute
at a non-peak CPU frequency in order to reduce CPU power, and hence,
energy consumption; however, it is oftentimes done at the expense of per-
formance degradation. For a program whose execution time is bounded
by peripherals’ performance rather than the CPU speed, applying DVS
to the program will result in negligible performance penalty. Unfortu-
nately, existing DVS-based power-management algorithms are conserva-
tive in the sense that they overly exaggerate the impact that the CPU
speed has on the execution time. We propose a new DVS algorithm that
detects the CPU-boundedness of a program on the fly (via a regression
method on the past MIPS rate) and then adjusts the CPU frequency ac-
cordingly. To illustrate its effectiveness, we compare our algorithm with
other DVS algorithms on real systems via physical measurements.

1 Introduction

Dynamic voltage and frequency scaling (DVS) is a mechanism whereby soft-
ware can dynamically adjust CPU voltage and frequency. This mechanism al-
lows systems to address the problem of ever-increasing CPU power dissipation
and energy consumption, as they are both quadratically proportional to the
CPU voltage. However, reducing the CPU voltage may also require the CPU
frequency to be reduced and results in degraded CPU performance with respect
to execution time. In other words, DVS trades off performance for power and
energy reduction.

The performance loss due to running at a lower CPU frequency raises several
issues. First, a user who pays to upgrade his/her computer system does not
want to experience performance degradation. Second, running programs at a
low CPU frequency may end up increasing total system energy usage [1,2,3].
In order to control (or constrain) the performance loss effectively, a model that
relates performance to the CPU frequency is essential for any DVS-based power-
management algorithm (shortened as DVS algorithm hereafter).

A typical model used by many DVS algorithms predicts that the execution
time will double if the CPU speed is cut in half. Unfortunately, this model
� Available as technical report LA-UR-04-7195.
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overly exaggerates the impact that the CPU speed has on the execution time. It
is only in the worst case that the execution time doubles when the CPU speed is
halved; in general, the actual execution time is less than double. For example, in
programs with a high cache miss ratio, performance can be limited by memory
bandwidth rather than CPU speed. Since memory performance is not affected by
a change in CPU speed, increasing or decreasing the CPU frequency will have
little effect on the performance of these programs. We call this phenomenon
— sublinear performance slowdown. Consequently, researchers have been trying
to exploit this program behavior in order to achieve better power and energy
reduction [4,5,6,7].

One common technique to exploit the sublinear performance slowdown de-
composes program workload into regions based on their CPU-boundedness. The
decomposition can be done statically using profiling information [4] or dynam-
ically through an auxiliary circuit [5] or through a built-in performance moni-
toring unit (PMU) [6,7]. In this paper, we propose a new PMU-assisted, on-line
DVS algorithm called β-adaptation that provides fine-grained, tight control over
performance loss and takes advantage of sublinear performance slowdown. This
new β-adaptation algorithm is based on an extension of the theoretical work
developed by Yao et al. [8] and by Ishihara and Yasuura [9]. Via physical mea-
surements, we will demonstrate the effectiveness of the β-adaptation algorithm
when compared to several existing DVS algorithms for a number of applications.

The rest of the paper is organized as follows. Section 2 characterizes how
current DVS algorithms relate performance to CPU frequency. With this char-
acterization as a backdrop, we present a new DVS algorithm (Section 3) along
with its theoretical foundation (Section 4). Then, Section 5 describes the exper-
imental set-up, the implemented DVS algorithms, and the experimental results.
Finally, Section 6 concludes and presents some future directions.

2 Related Work

There have been some attempts to exploit the sublinear performance slowdown
(where increasing or decreasing the CPU frequency will have little effect on the
performance of a program) to achieve more power and energy reduction. For
example, Li et al. [5] propose to set the CPU to a low speed whenever an L2
cache miss occurs, whereas Hsu and Kremer [4] use off-line profiling to identify
memory-bound program regions. The former approach requires an auxiliary cir-
cuit, and the latter approach needs source code and compiler support. These
requirements make their approaches more difficult to implement in practice.

Another approach is to use built-in performance monitoring unit (PMU) to
assist in the on-line detection of sublinear performance slowdown. Our work
and Choi et al.’s recent work [6,7] belong to this category. Both use a regres-
sion method and PMU support to perform the on-line construction of a simple
performance-prediction model so as to capture the degree of CPU-boundedness.
In general, the design of PMU-assisted on-line DVS algorithms is not an easy
task. First, the PMU is notorious for its incomplete set of event counting and
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inconsistency across generations of the CPU. Second, the correlation of event
counts to power and performance is not yet clear. Hence, for now, a PMU-
assisted, on-line, DVS algorithm ought to minimize its dependency on event
counts and rely as much as possible on those event counts that are consistent
across CPU generations.

Our work differs from Choi et al.’s work in the definition of CPU-boundedness,
and thus, the detection mechanism. Choi et al.’s work is based on the ratio of
the on-chip computation time to the off-chip access time. In contrast, our al-
gorithm defines CPU-boundedness as the fraction of program workload that is
CPU-bound. Because of the different definitions, the set of events monitored
by the PMU for each algorithm is different. In Section 5.5, we argue that our
DVS algorithm is equally effective but has a simpler implementation. Moreover,
we provide a theoretical foundation of why our DVS algorithm is effective in
achieving energy optimality. We believe that the same theoretical result can be
applied to their work as well.

3 β-Adaptation: A New DVS Algorithm

Here we describe a new, interval-based, PMU-assisted, DVS algorithm that pro-
vides fine-grained, tight control over performance loss as well as exploits the
sublinear performance scaling in memory-bound and I/O-bound programs. The
theoretically-based heuristic algorithm is based on an extension of the theoretical
work developed by [8] and [9] (details in Section 4):

If the CPU power draw is a convex function of the CPU frequency, then
for any program whose performance is an affine function of the CPU fre-
quency, running at a constant CPU speed and meeting the deadline just
in time will minimize the energy usage of executing the program. If the
desired CPU frequency is not directly supported, the two immediately-
neighboring CPU frequencies can be used to emulate the desired CPU
frequency and result in an energy-optimal DVS schedule.

To account for the sublinear performance slowdown, the following model that
relates performance to the CPU frequency is often used [6,7,10]:

T (f) = Wcpu · 1
f

+ Tmem (1)

The total execution time T (f) at frequency f is decomposed into two parts. The
first part models on-chip workload in terms of CPU cycles. Its value is affected by
the CPU speed change. The second part models the time due to off-chip accesses
and is invariant to changes in the CPU speed. Note that this breakdown of the
total execution time is inexact when the target processor supports out-of-order
execution because on-chip execution may overlap with off-chip accesses [11].
However, in practice, the error tends to be quite small [6,7].

The model T (f) treats program performance as an affine function of the CPU
frequency f and thus allows us to apply the aforementioned theoretical result.
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We simply execute a program at CPU frequency f∗ such that D = T (f∗) where
D is the deadline of the program. However, there are two challenges in using the
theorem this way. First, in many cases there is no consensus on how to assign
a deadline to a program, e.g., scientific computation. Second, to use T (f), we
need to know the values of the coefficients, Wcpu and Tmem. These coefficients
are oftentimes determined by the hardware platform, program source code, and
data input. Thus, calculating these coefficients statically is very difficult.

We address these challenges by defining a deadline as the relative performance
slowdown and by estimating the model’s coefficients on the fly (without any off-
line profiling nor compiler support). The relative performance slowdown δ

δ =
T (f)

T (fmax)
− 1 (2)

where fmax is the peak CPU frequency, has been used in previous work [6,7,11].
It is widely accepted in programs that are difficult to assign deadlines in terms
of absolute execution time. It also carries more timing requirement information
than CPU utilization and IPC rate. Providing this user-tunable parameter δ in
our DVS algorithm allows fine-grained, tight control over performance loss.

To estimate the coefficients more efficiently, we first re-formulate the original
two-coefficient model in Equation (1) as a single-coefficient model:

T (f)
T (fmax)

= β · fmax

f
+ (1 − β) (3)

with
β =

Wcpu

Wcpu + Tmem · fmax
(4)

The coefficient β is, by definition, a value between 0 and 1. It was introduced
by one of the authors in [4] to quantify, for a program, the performance impact
to the CPU speed change. The metric represents the fraction of the program
workload that scales linearly with the CPU frequency. If a program has β = 1,
it means the execution time of the program will double when the CPU speed is
halved. In contrast, a program with β ≈ 0 will have its execution time remained
the same even running at the slowest CPU speed.

The coefficient β is computed at run time using a regression method on the
past MIPS rates reported from the PMU. Specifically, our DVS algorithm keeps
track of the average MIPS rate for each executed CPU frequency and applies the
least-square fitting at each interval to dynamically re-compute the new β value:

β =

∑
i(

fmax

fi
− 1)(mips(fmax)

mips(fi)
− 1)∑

i(
fmax

fi
− 1)2

(5)

where mips(f) is the average MIPS rate for CPU frequency f . Note that our
mechanism assumes a constant number of total instructions in a program, regard-
less of the running CPU frequency. This assumption has been verified through
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For every I seconds, do the following:

1. Use Equation (5) to compute β.
2. Compute frequency f∗.

f∗ = max

(
fmin,

fmax

1 + δ/β

)

3. Figure out fj and fj+1.

fj ≤ f∗ < fj+1

4. Compute the ratio r.

r =
1/f∗ − 1/fj+1

1/fj − 1/fj+1

5. Run r · I seconds at fj.
6. Run (1 − r) · I seconds at fj+1.
7. Update mips(fj) and mips(fj+1).

Fig. 1. Algorithm β-adaptation. Parameter δ is the relative performance slowdown and

parameter I is the length of an interval in seconds.

extensive experiments. In practice, the value of β converges very quickly for the
benchmarks we tested.

The rest of the algorithm simply applies the theoretical result to compute the
desired CPU frequency f∗ for each interval, once the coefficient β is updated,
plus some bookkeeping on mips(f). The derivation of f∗ comes by equating
Equation (2) with Equation (3). Figure 1 outlines the entire algorithm.

4 Theoretical Foundation

In the previous section, we claim a theoretical result for energy-optimal DVS
scheduling which extends both Yao et al.’s work in [8] and Ishihara and Yasuura’s
work in [9]. In this section we provide evidence to support our claim.

The energy-optimal DVS scheduling problem considered here is taken from [4].
That previous work only provides a problem formulation. In this paper we pro-
vide a theorem that characterizes the energy-optimal DVS schedule for the prob-
lem. The theorem is also closely related to previous work such as Miyoshi et al.’s
“critical power slope” [2].

A DVS system is assumed to export n settings {(fi, Pi)}, where Pi is the CPU
power dissipation (in watts) at CPU frequency fi. Without loss of generality, we
assume 0 < fmin = f1 < · · · < fn = fmax. We also denote the total execution
time of a program running at setting i as Ti. Finally, to facilitate discussion, we
define Ei = Pi ·Ti, where Ei is the energy consumption (in joules) when running
for Ti seconds at CPU frequency fi.

The DVS scheduling problem is formulated as follows: Given a program and a
deadline D (in seconds), find a DVS schedule (t∗1, · · · , t∗n) such that if the program
is executed for t∗i seconds at setting i, the total energy usage E is minimized, the
deadline D is met, and the required work is completed. Mathematically speaking,

t∗ = argmin{E =
∑

i

Pi · ti :
∑

i

ti ≤ D,
∑

i

ti/Ti = 1, ti ≥ 0} (6)
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To simplify the discussion of the theorem, we handle a few corner cases first.
First, the condition D ≥ mini Ti has to be satisfied so that the problem is feasible.
Second, if the condition D ≥ maxi Ti is satisfied, the problem becomes the
classical fractional Knapsack problem [12]. In this case, the energy-optimal DVS
schedule will execute the entire program at setting i∗ where i∗ = argi min{Ei}.
For the case of T1 = · · · = Tn, the above DVS schedule is also energy-optimal.
What is left is the case mini Ti < D < maxi Ti, which we assume to be true for
the following theorem.

Theorem 1. If
Ti =

c1

fi
+ c0, c1 �= 0

and
P1 − 0
f1 − 0

≤ P2 − P1

f2 − f1
≤ P3 − P2

f3 − f2
≤ · · · ≤ Pn − Pn−1

fn − fn−1

then

t∗i =

⎧⎪⎨
⎪⎩

1/f∗−1/fj+1
1/fj−1−fj+1

· Tj i = j

D − t∗j i = j + 1
0 otherwise

where
fj ≤ f∗ < fj+1

Proof. (See the Appendix).

Theorem 1 says that for any program whose execution time is an affine function
of the CPU frequency, if the DVS settings in a CPU are well-assigned (explained
below), then we can run the program at a CPU frequency that finishes the
execution right at the deadline and results in an energy-optimal schedule. If the
desired CPU frequency is not directly supported, it can be emulated by the two
immediately-neighboring CPU frequencies.

For any DVS-enabled processor whose power draw can be modeled as a
convex function of its frequency, the processor’s DVS settings are always well-
assigned. However, some realistic processors do not have well-assigned DVS set-
tings by default. In these processors, the lowest frequency f1 can be emulated
by the combination of frequency 0 (i.e., the CPU in sleep mode) and the sec-
ond lowest frequency f2 with a lower power dissipation, i.e., P1−0

f1−0 > P2−P1
f2−f1

. As
a result, completing a task before its deadline and putting the CPU into sleep
mode is more energy-efficient than completing the task at the deadline. This is
the phenomenon observed by Miyoshi et al. [2] and motivated them to devise a
technique called “critical power slope”. The phenomenon can be eliminated by
making adjustments to DVS settings so that they become well-assigned.

Finally, Theorem 1 extends the work presented by Yao et al. [8] and by
Ishihara and Yasuura [9]. First, both works assume that c0 = 0. Second, Ishihara
and Yasuura’s work assumes a fixed relationship between f and V in a DVS
setting; namely,

f = k · (V − VT )α/V (7)
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where k, VT , α are positive constants. Unfortunately, today’s DVS processors
may not be able to support such an assumption. This is because these processors
only provide a discrete set of CPU frequencies and voltages, whereas the above
equation requires a continuous range of CPU frequencies to be supported for a
discrete set of voltages. Theorem 1 loosens these assumptions to facilitate DVS
algorithms on realistic processors.

5 Experiments

In this section, we describe our experimental environment in which we evaluate
and compare algorithm β-adaptation with several other DVS algorithms. We
also present an in-depth discussion of the experimental results.

5.1 Experimental Setup

In order to acquire high-fidelity experimental data, we set-up our experiments
using physical measurements, as shown in Figure 2(a). The experimental re-
sults were collected through a Yokogawa WT210 digital power meter [13]. The
power meter continuously samples the instantaneous wattage at every 20 μs.
The profiling and tested computer both run the Linux 2.4.18 kernel. All the
benchmarks were compiled by GNU compilers with optimization level -O2. All
the benchmarks were run to completion; each run took over a minute.

The benchmarks are taken from SPEC’s CPU95 benchmark suites. The SPEC
benchmarks [14] emphasize the performance of the CPU and memory, but not
other computer components such as I/O (disk drives), networking or graphics.
We chose to use the SPEC benchmarks because they demonstrate a range of
performance sensitivity to the CPU frequency change, i.e., they have a wide
range of β values [4]. The experimental data are collected by running these SPEC
benchmarks with the reference data input.

Profiling 
Computer

Tested
Computer

Digital
Power Meter

Wall 
Power Outlet

Po
w

er
 S

tr
ip

AC Adapter

f (MHz) V

1067 1.15

1333 1.25

1467 1.30

1600 1.35

1800 1.45

(a) (b)

Fig. 2. The experimental setup
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The hardware platform in our experiments is an HP NX9005 notebook com-
puter. This computer includes a mobile AMD Athlon XP 2200+ processor, 256-
MB DDR SDRAM, 266-MHz front-side bus, a 30-GB hard disk, and a 15-inch
TFT LCD display. The mobile AMD Athlon XP processor has been used in
Sun’s Fire B100x blade servers [15]. It has a total of 384-KB cache space. The
processor exports two registers that the software can write the target frequency
and voltage values into. In our experiments, we restrict the processor to have five
settings as shown in Figure 2(b). The transition time from one setting to another
is 100 microseconds. During the measurements, the battery was removed, and
the monitor was turned off.

Finally, when presenting the experimental results, we associate with each
application its β value. Recall that the metric β represents the fraction of the
program workload that is very sensitive to the CPU speed change. That is, the
higher the β of a program, the more CPU-bound its performance. The β value
for each benchmark was derived by profiling total execution times for all settings
and then applying a least-squares fit on Equation (3).

5.2 Implemented DVS Algorithms

To evaluate the effectiveness of our DVS algorithm β-adaptation, we have im-
plemented a number of other DVS algorithms. Though we do not claim that
the implemented DVS algorithms represent a comprehensive comparison of all
existing approaches, we feel that the range is wide enough to evaluate the effec-
tiveness of our algorithm and to gain new insights from the experimental results.
The following is a brief description of each algorithm we implemented.

2step: This algorithm assumes dual CPU speeds in the processor and monitors
the CPU utilization percentage periodically. If the percentage is higher than a
pre-defined threshold, the algorithm will set the CPU to the fast speed; if it is
lower than another pre-defined threshold, the algorithm will set the CPU to the
low speed. This DVS algorithm is considered to be the best algorithm in Grun-
wald et al.’s empirical study on several interval-based algorithms using CPU uti-
lization [16]. In our implementation, the two thresholds are 50% and 10% and the
two speeds are the maximum and the minimum CPU speeds in the processor.

nqPID: This algorithm was proposed by Varma et al. [17] as a refinement of
the 2step algorithm. Recognizing the similarity of DVS scheduling and a clas-
sical control-systems problem, the authors took the equation describing a PID
controller (Proportional-Integral-Derivative) and modified it to suit the DVS
scheduling problem. This algorithm significantly improved the control over per-
formance loss that the 2step algorithm lacks. In addition, the authors found out
that the algorithm’s effectiveness does not depend on careful tuning of parame-
ters, which is a nice feature given that 2step’s effectiveness is critically dependent
on the choice of application-specific threshold values [16].

freq: This algorithm is similar to strategies that reclaim the slack time between
the actual processing time and the worst-case execution time (e.g., [18,19]).
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Specifically, the algorithm keeps track of the amount of remaining CPU work
Wleft and the amount of remaining time before the deadline Tleft. The desired
CPU frequency fnew at each interval is simply

fnew =
Wleft

Tleft
.

The algorithm assumes that the total amount of work in CPU cycles is known
a priori, which, in practice, is often unpredictable [1] and not always a constant
across frequencies [10].

mips: This algorithm is taken from [20] and represents a DVS strategy guided
by an externally specified performance metric. Specifically, the new frequency
fnew at each interval is computed by

fnew = fprev · MIPStarget

MIPSobserved

where fprev is the frequency for the previous interval, MIPStarget is the exter-
nally specified performance requirement, and MIPSobserved is the real MIPS rate
observed in the previous interval. In our experiments, each benchmark has its
own MIPStarget, which is derived by measuring the MIPS rate for the entire
application and then dividing it by (1 + δ).

5.3 Experimental Results

Table 1 presents the experimental results for the five interval-based DVS al-
gorithms. When a program is memory-bound or I/O-bound (β close to zero),
there is substantial opportunity to reduce CPU energy consumption with neg-
ligible performance loss. In contrast, when a program is CPU-bound, there is
little opportunity to reduce CPU power and energy within a tight performance-
loss bound of 5%. Moreover, none of these five DVS algorithms could produce
a DVS schedule that had the exact performance degradation of 5%; the actual
performance loss varied from one benchmark to another.

Among the five interval-based DVS algorithms, the β-adaptation algorithm
outperforms the others. In a sense, it verifies that our mechanism for comput-
ing CPU-boundedness on the fly is of low overhead and that the algorithm is
effective in providing tight control over performance loss due to DVS as well
as exploiting the sublinear performance slowdown for significantly more CPU
power and energy savings. Algorithms mips and nqPID arguably rank second.
Algorithm mips delivers better control over performance loss for all eight bench-
marks that we tested, whereas algorithm nqPID performs better with respect to
power and energy reduction but at the expense of more substantial performance
loss. This is especially obvious for the CPU-bound benchmarks. Algorithms freq
and 2step clearly rank last.

So, what have we learned from this experiment? First, the number of in-
structions is a better metric for specifying the CPU work requirement than the
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Table 1. The effectiveness of 5 different DVS algorithms. Each table entry is in the

format of relative-time/relative-energy with respect to the total execution time and

system energy usage when running the application at the highest setting throughout

the entire execution.

program β 2step nqPID freq mips β-adapt.
swim 0.02 1.00/1.00 1.04/0.70 1.00/0.96 1.00/1.00 1.04/0.61

tomcatv 0.24 1.00/1.00 1.03/0.69 1.00/0.97 1.03/0.83 1.00/0.85

su2cor 0.27 0.99/0.99 1.05/0.70 1.00/0.95 1.01/0.96 1.03/0.85

compress 0.37 1.02/1.02 1.13/0.75 1.02/0.97 1.05/0.92 1.01/0.95

mgrid 0.51 1.00/1.00 1.18/0.77 1.01/0.97 1.00/1.00 1.03/0.89

vortex 0.65 1.01/1.00 1.25/0.81 1.01/0.97 1.07/0.94 1.05/0.90

turb3d 0.79 1.00/1.00 1.29/0.83 1.03/0.97 1.01/1.00 1.05/0.94

go 1.00 1.00/1.00 1.37/0.88 1.02/0.99 0.99/0.99 1.06/0.96

number of CPU cycles. For the benchmarks we tested, we found that the number
of instructions tends to remain constant across all settings. In contrast, the num-
ber of CPU cycles varies significantly depending on the executed DVS schedule.
For example, the swim benchmark, when running at the lowest setting, has only
60% of the CPU execution cycles running at the highest setting. Typically, algo-
rithm freq uses the worst-case execution cycles which in our case is the number
of CPU cycles at the highest setting. This approach exaggerates the amount of
the CPU work to be done and results in less effective energy reduction. This
explains why algorithm mips performs better than algorithm freq.

Second, a large window size of past PMU reports is better than a small
window size of past PMU reports. In the experiments we found that the MIPS
rate varies significantly from interval to interval, especially for CPU-intensive
applications. However, the accumulated MIPS rate converges quickly. Thus, the
use of the MIPS rate in a global manner seems to be more effective than the use of
the rate in a local manner. This partially explains the effectiveness of algorithm
β-adaptation compared to algorithm mips. One concern, however, for using a
large window size is that the DVS algorithm may be less responsive for programs
that expose multiple execution phases of varying degrees of CPU-boundedness.
For the SPEC benchmarks, which are known to have the aforementioned behavior,
this does not seem to be a problem. More details can be found in Section 5.4.

Finally, we confirmed that CPU utilization by itself does not provide enough
information about system timing requirements. As a result, the control over
performance loss is unsatisfactory. This can be seen from the experimental results
of algorithm 2step and algorithm nqPID. Algorithm 2step does not seem to
perform any DVS scheduling. This is because the CPU for SPEC benchmarks is
active almost all the time, i.e., its CPU utilization is always full. In this case,
there exists no optimal threshold values for 2step to make it more effective.
Algorithm nqPID refines algorithm 2step by removing the threshold mechanism
from the end user. While it is more effective than algorithm 2step in terms of
CPU power and energy reduction, the lack of enough information about deadlines
makes it impossible to provide tight control over performance loss.
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5.4 The Impact of Multiple-Phase Execution Behavior

To better address the impact of multiple-phase programs to the DVS algorithm
β-adaptation, we compare it with a profile-based, off-line DVS algorithm called
hsu [4]. The algorithm hsu uses PMU-assisted off-line profiling and source code
analysis to identify the most energy-profitable region in a program to slow down
without causing the performance loss to surpass a pre-defined level. Off-line
profiling is performed on a section-by-section basis while the DVS scheduling
decisions are made in a global manner, competitively comparing the different
sections. This global view of the impact of DVS on different code sections allows
more effective DVS scheduling, especially for multiple-phase programs such as
the SPEC benchmarks.

Algorithm hsu also uses the relative performance slowdown δ to specify con-
trol over performance loss. Thus, it allows us to compare the two algorithms on a
fair basis. In the experiments we executed the profile-based algorithm hsu with
two different training inputs, denoted as hsu(train) and hsu(ref) respectively.
The two sets of training inputs are provided along with the SPEC benchmark
codes. Table 2 shows the experimental results of both algorithms for the CFP95
benchmark suite.

We conclude that the effectiveness of algorithm β-adaptation is compara-
ble to that of algorithm hsu. Both algorithms achieve a significant amount of
CPU power and energy reduction with tight control over performance loss. It
is interesting to note that the two algorithms seem to complement each other.
Algorithm β-adaptation performs better in CPU-bound benchmarks from mgrid
to fpppp, whereas algorithm hsu performs better in memory-bound benchmarks
from swim to hydro2d. We are in the process of investigating the causes for this
phenomenon.

As mentioned in Section 2, the effectiveness of profile-based DVS algorithms
is highly determined by its training data input. In our experiments, we found

Table 2. The comparison of our new on-line DVS algorithm β-adaptation with an

off-line DVS algorithm hsu. Each table entry is in the format of relative-time/relative-
energy with respect to the total execution time and system energy usage when running

the application at the highest setting throughout the entire execution.

program β hsu(train) hsu(ref) β-adapt.
swim 0.02 1.01/0.75 1.04/0.59 1.04/0.61

tomcatv 0.24 1.03/0.70 1.06/0.60 1.00/0.85

hydro2d 0.19 1.03/0.75 1.03/0.79 1.02/0.84

su2cor 0.27 1.01/0.88 1.02/0.83 1.03/0.85

applu 0.34 1.03/0.87 1.03/0.87 1.04/0.85

apsi 0.37 1.03/0.85 1.04/0.91 1.05/0.83

mgrid 0.51 1.01/1.00 1.01/1.00 1.03/0.89

wave5 0.52 1.00/1.00 1.00/1.00 1.04/0.87

turb3d 0.79 1.04/0.95 1.04/0.95 1.05/0.94

fpppp 1.00 1.00/1.00 1.00/1.00 1.06/0.95
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that algorithm hsu chose different program regions to slow down in seven of the
10 benchmarks. Running the reference data input as the training input does
not necessarily yield a better result, for example, apsi. We suspect that the
instrumented program for profiling has somewhat altered the instruction access
pattern and is considerably different from the original code. According to Hsu’s
dissertation [21], the SUIF2 compiler infrastructure, on which algorithm hsu was
built, also has a major impact on the experimental results.

5.5 A Comparison with Choi et al.’s Work

In this section, we compare and contrast our work with Choi et al.’s work in [6,7].
Recall that both works are based on the same Equation (1). The difference
is in the calculation of equation coefficients. Our work calculates β defined in
Equation (4), whereas Choi et al.’s work calculates αf defined as follows:

αf = f · Tmem

Wcpu
(8)

Analytically, the two metrics are equivalent:

β =
1

1 + αf · fmax/f
(9)

However, there are several major differences in terms of implementation.
First, the β metric is invariant to a CPU frequency change, whereas the αf met-
ric is defined with respect to a particular CPU frequency f . Thus, the number
of coefficients calculated in Choi et al.’s DVS algorithm is more than the num-
ber of coefficients calculated in algorithm β-adaptation. Second, the formula in
calculating αf is more complex. This is due to the two-coefficient model they
use, in contrast to the one-coefficient model we use. Finally, the number of PMU
event counts needed for calculating β is smaller than that for calculating αf .
Since a CPU can simultaneously count a finite number of events, counting too
many events may introduce a larger time overhead.

Finally, our new DVS algorithm has a simpler implementation than Choi
et al.’s work. However, we cannot do an empirical comparison given the current
setting we have. Choi et al. implemented their DVS algorithms on Intel Xscale-
based processors which does not provide counting for the number of retired in-
structions. On the other hand, our hardware platform, Athlon XP processor, does
not provide counting for the number of executed instructions. In fact, this is one
of the big issues in using the PMU to assist DVS scheduling — the CPU events
may not be compatible nor consistent across different hardware platforms. This
is also why Choi et al. presented two platform-dependent implementations [6,7]
of the same DVS algorithm [6].

5.6 Sensitivity Analysis of Algorithm Parameters

In this section, we present a sensitivity analysis of the parameters in algorithm
β-adaptation, i.e., δ for the relative performance slowdown and I for the length
of an interval, as shown in Figure 1.
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For the SPEC CPU95 benchmarks, the average execution time increases at
a pace of 3% for every 5% increase in δ, whereas the average energy consump-
tion stays around 20% after δ passes 30%. As δ increases, the algorithm slows
down CPU-bound programs which have lower performance-power ratios. Hence,
setting δ at a small value such as 5% is recommended.

In terms of the interval size I, the average execution time is a U-shape curve.
Since setting I to a large value, such as five seconds, did not let the program run
at the converged f∗ for a sufficiently long time and setting I to a small value
such as 10 milliseconds introduced a significant amount of time overhead, we
recommend setting I at a value between 50 milliseconds to 1 second.

6 Conclusions and Future Work

In this paper, we proposed a new, PMU-assisted, interval-based, DVS algorithm
that detects the CPU-boundedness of a program on the fly and adjusts the CPU
speed accordingly. The algorithm is no arbitrary heuristic. It is based on an
extension of the previous theoretical work for energy-optimal DVS scheduling
problem. The algorithm has also proven to be effective in comparison with a
number of DVS algorithms through physical measurements. That is, the new
algorithm provides fine-grained, tight control over performance loss as well as
exploits the sublinear performance slowdown. Finally, the algorithm is simple to
implement.

Our new DVS algorithm can be refined in various ways. One particular direc-
tion is to use compiler hints as additional scheduling support. While this idea is
not new (e.g., [19,22]), the type of hint that the compiler should provide so that
the overall DVS algorithm is effective is still a research topic for general-purpose
systems. To relieve the compiler from the difficulty of giving exact timing informa-
tion off-line, we could have the compiler simply identify and distinguish execution
phases of a program in terms of CPU-boundedness in an approximate manner. Al-
gorithm β-adaptation can then be refined to compute the β value for each of these
phases to further improve its effectiveness for memory-bound programs.
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Appendix

To prove Theorem 1, we first show that the following chain of inequalities is
true.

0 ≥ E2 − E1

T2 − T1
≥ E3 − E2

T3 − T2
≥ · · · ≥ En − En−1

Tn − Tn−1

This is not difficult to prove because

Ei − Ei−1

Ti − Ti−1
− Ei+1 − Ei

Ti+1 − Ti
= fi ·

(
Pi+1 − Pi

fi+1 − fi
− Pi − Pi−1

fi − fi−1

)

+fi · c0

c1
·
(

Pi+1 − Pi

fi+1 − fi
· fi+1 − Pi − Pi−1

fi − fi−1
· fi−1

)
≥ 0

and
Ei+1 − Ei

Ti+1 − Ti
=

fifi+1

fi − fi+1
·
[(

Pi+1

fi+1
− Pi

fi

)
+

c0

c1
(Pi+1 − Pi)

]
≤ 0.

Then we define ri = ti/Ti and introduce a new function Emin(d) as follows.

Emin(d) = min{
∑

i

ri · Ei :
∑

i

ri · Ti = d,
∑

i

ri = 1, ri ≥ 0}

Since the sequence {Ei+1−Ei

Ti+1−Ti
}i=1,···,n−1 is non-increasing, function Emin(d) is

equivalent to the piecewise-linear function that connects points {(Ti, Ei)}. Since
the slopes of chords in this piecewise-linear function are all non-positive, Emin(d)
is non-increasing. Thus, we seek for a solution of Emin(D) as Emin(D) ≡
min{Emin(d) : d ≤ D}. For Tj+1 < D ≤ Tj, Emin(D) is the function value at D
in the chord connecting points (Tj , Ej) and (Tj+1, Ej+1). The proof is completed
by solving the linear system of t∗j + t∗j+1 = D and t∗j/Tj + t∗j+1/Tj+1 = 1. �
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Abstract. Management of power in data centers is driven by the need to not
exceed circuit capacity. The methods employed in the oversight of these power
circuits are typically static and ad-hoc. New power-scalable system components
allow for dynamically controlling power consumption with an accompanying ef-
fect on performance. Because the incremental performance gain from operating
in a higher performance state is less than the increase in power, it is possible
to overprovision the hardware infrastructure to increase throughput and yet still
remain below an aggregate power limit. In overprovisioning, if each component
operates at maximum power the limit would be exceeded with disastrous results.
However, safe overprovisioning regulates power consumption locally to meet the
global power budget. Host-based and network-centric models are proposed to
monitor and coordinate the distribution of power with the fundamental goal of
increasing throughput. This research work presents the advantages of overprovi-
sioning and describes a general framework and an initial prototype. Initial results
with a synthetic benchmark indicate throughput increases of nearly 6% from a
staticly assigned, power managed environment and over 30% from an unman-
aged environment.

Keywords: Overprovisioning, managing power limits.

1 Introduction

Our primary motivation is to increase throughput, given defined power limits, by in-
creasing parrallelism. High performance clusters such as BlueGene/L [1] make use of
low-power, modest clock rate processors to provide more efficient performance with re-
spect to energy consumption. A similar approach can be taken with frequency scalable
CPUs and general-purpose hardware. The CPU is a dominant power consumer in most
servers and is consequently our initial focus. In addition, there is a manufacturer com-
mitment towards CPU power conservation as exhibited in the ACPI Specification [2]. In
general, scaling the the processor from higher to lower power gears tends to slow down
power usage in other devices. The relationship of the CPU frequency (F) and voltage
(V) is given by [3]:

CPU Power = A · C · V 2 · F
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Where A is the activity factor for how frequently gates switch and C is the total capac-
itance at the gate outputs. Frequency is proportional to voltage; therefore, CPU power
is proportional to F 3. However, to the first approximation, performance is proportional
to F .

Many large data centers have a goal of managing instantaneous power consump-
tion. The physical infrastructure of data centers is typically partitioned into a set of
circuits. These circuits, allocated per rack, provide a maximium quantity of instanta-
neous power. Data center personnel approach the problem of assigning equipment to
racks (provisioning) conservatively. Exceeding the circuit power limit can cause a dis-
ruption in service. Therefore, managing instaneous power consumption is often a higher
priority than reducing energy consumption.

Complicating the delicate balance of maintaining a safe upper bound on power con-
sumption, significant variation occurs based on the state of connected equipment. A
server that boots needs near its maximum rated amount of power. In contrast, lightly
loaded and idle servers draw significantly less power. An analysis of work performed
and power consumed facilitates safe overprovisioning. This benefit offers data centers
the ability to maintain peak performance in defined power limits.

The general concept of overprovisioning is not new in industry. For instance, equip-
ment exists to establish a sequence of power up when disruptions occur along with the
ability to monitor aggregate power usage [4]. Hardware provides a means of reacting to
power failures and monitoring circuit health; however, it is not a good mechanism for
controlling power in a concerted fashion. Such intelligence must be used in environ-
ments that suffer from the inability to expand their power infrastructure.

We regard saving energy as a secondary goal in intelligent power allocation. In ad-
dition, we choose to not require changes to existing applications. We do not preclude
possible gains by allowing applications more control in the decision process but believe
solutions that require this to function are too restrictive. Our initial implementation
results reflect at least a 6% gain in throughput in a synthetic benchmark while still re-
maining below a fixed aggregate power limit. This performance gain includes a static
analysis done to ensure cluster nodes are operating at the best gear. In unmanaged envi-
ronments, using the same benchmark, our implementation provides a throughput gain
in excess of 30%.

In section 2 we provide an overview of the principles and design aspects of our
model. Section 3 discusses the implementation. Section 4 illustrates preliminary results.
Section 5 presents related work and section 6 outlines conclusions and future efforts.

2 Overview

It is useful to first formalize the motivations mentioned previously. Given a defined
power limit Pglobal, a finite number of nodes can complete work subject to this con-
straint. If we denote Pgear as the power consumption of a node in a given perfor-
mance gear, the number of total nodes (all nodes execute in the same gear), can be
represented as Ngear = �Pglobal/Pgear�. Next, given the throughput for a node in a
given gear represented by the function T (Pgear), total throughput of all nodes is sim-
ply Ttotal = T (Pgear) · Ngear. The energy efficiency per node, i.e., the useful work
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Fig. 1. Managing power to a 450 watt limit based on a 10% reduction in original work and 25%
reduction in node power

per unit energy over time t is, Enode = T (Pgear)/(Pgear · t). The overall efficiency
of n nodes is Etotal = Ttotal/(n · Pgear · t). A known relationship between Pgear and
T (Pgear), provides the impetus for increasing overall throughput. Modeling theoret-
ical power usage with Pgear is simplified above for clarity. In practice, with varying
workloads the maximum, minimum, and average power usage can differ significantly.
In addition to finding Ngear, it is possible for a mixed set of Pgear values to maximize
Pglobal. In general, there is a work benefit when ΔPglobal > ΔTtotal. If Pglobal α Fκ,
when κ ≤ 1 and n increases there is a gain in Etotal.

Figure 1 depicts the aforementioned general strategy. In a given interval, the total
power available to all nodes is constrained by a 450 Watt limit. Each node on the left
executes unconstrained and consumes 150 Watts while completing 1/3 of the work. In
contrast, the overprovisioned nodes on the right are now restricted to 1/4 of the power
budget so consume 25% less power per node. If the restricted nodes execute with a 10%
penalty in work contribution, a reasonable expectation, these nodes provide a realized
benefit of 20% due to exceeding the original work target. This example is presented
for illustrative purposes and it provides the incentive to manage power consumption to
increase throughput.

2.1 Local Power Limit

The locally assigned power limit for each participant in the network is regarded as
a mutual decision based on global constraints. Given the global budget, each node is
responsible for the suballocation of power at a fine-grained level. Each node operates
within its derived maximum power limit. It is free to choose where to set its own target
usage level based on need, priority, or other relevant measures.

With this allocation in mind, it is possible for the global power allocation mecha-
nism to account for each node’s power need based on the relative difference between its
target usage and current limit. This allows flexible policies to be deployed at the local
level but still utilizes the same simple interface for the allocation of the global budget.
The global budget can be considered to be dynamically assigned based on intelligent
devices on the network. For instance, smart racks or uninterruptible power supplies may
supply the information for autonomic operation.

At the node’s architectural level, each device in a server has an intelligent inter-
face to relay or provide information related to system power draw, available gears, as
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well as minimum and maximum power requirements directly to power management
algorithms. Although elements of this are available in laptop systems using the ACPI
specification [2], future development of consistent interfaces to hardware should help
promote similar access to server sensors using the same specification.

2.2 Design

Our general design approach to power distribution is encapsulated with the producer-
consumer model. The power producers are regarded as the suppliers of power to various
components. The producer at the cluster node level, such as its power supply, may in
fact be a consumer at the global level but the approach is conveniently generalized in
a hierarchical manner. Thus, each device in the overall system fits in this hierarchy.
The policies for each device must be flexible enough to adapt to the unique demands
for services from that device. The interface between devices is through its budget and
aggregated at upper levels as applicable. The units of budget allocation align with mea-
surement methodology (watts).

2.3 Components

A number of logical components comprise the framework and are shown in Figure
2. Starting at the lowest level, device controllers provide the intelligence to determine
the performance gear used. Each server node has this functionality aggregated into a
cohesive entity referred to as the Local Power Agent (LPA). It is responsible for deter-
mining the average power consumption target. There is loosely coupled communication
between the LPA and the devices it manipulates with the device controller. A logical
Power Message Bus (PMB), implemented as a message queue, facilitates communica-
tion between device drivers and the LPA. This flexibility allows for direct control by
the LPA as well as the potential for negotiation of power between device drivers.

Another major component of the system is the Global Power Agent (GPA). The
GPA is responsible for the coordination and interchange of related messages between
nodes. It analyzes messages from the network and makes the appropriate requests to
the LPA using the PMB. This assignment is possible due to all participants in a Power
Management Group (PMG) broadcasting relevant information to all nodes in the clus-
ter. There is not a one-to-one correspondence between a PMG and a subnet; however,
our initial implementation limits servers in a PMG to be on the same broadcast network.

LPA GPA

NIC

DISK

CPU

Cluster Node local limit

target

global
limit

Fig. 2. Relationship of the GPA, LPA, and power-managed devices
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In addition to receiving PMG broadcasts, the GPA responds to other network requests
using the Power Exchange Protocol (PEP). These messages include administrative con-
trol requests (i.e., setting the global power limit) in our initial prototype.

2.4 Architecture

For the initial development and model analysis, a cluster of servers was built using fre-
quency scaling processors. Ten nodes were assembled using the following hardware:
40 GB Maxtor EIDE 7200 RPM disk drives, ASUS K8V motherboards (on-board 1Gb
NIC), 1 GB of PC3200 DDR SDRAM, and an AMD64 3000+ CPU. All nodes were
interconnected on a dedicated 100 Mb switch. Although we regard power distribution
as a general allocation problem across a diverse set of hardware architectures and com-
putational resources, our initial implementation is limited due to budgetary reasons.

The entire cluster uses the Linux 2.6 kernel. For frequency and voltage scaling,
the AMD PowerNow cpufreq module is used. Modifications were done to augment the
ACPI device tables in the BIOS. These additional performance gears were subsequently
used in the cpufreq driver as indicated in Table 1. Measured system idle power con-
sumption is shown along with expected CPU power usage obtained from [5]. System
idle power reflects reduced power usage from using the HLT instruction. The modified
frequency and voltage settings were used to expose additional gears for the purpose of
our evaluation.

Table 1. AMD64 3000+ CPU and system idle power consumption

Frequency (Mhz) BIOS Voltage CPU (Watts) New Voltage System Idle (Watts)

2000 1.5 89 1.5 89
1800 1.4 66 1.4 86
1600 - - 1.35 84
1400 - - 1.3 83
1200 - - 1.2 81
1000 1.1 22 1.1 79
800 - - 1.0 77

For calculating system power measurements, two digital multimeters (DMMs) were
connected to serial ports on a non-cluster server. Custom software was created to inter-
face with the DMMs located on this host. One meter was configured to measure AC
voltage and the other inserted in a serial fashion to measure amperes on a single node.
To allow a cluster node to have a notion of power usage, a TCP-based request server
was created to allow a node to query power usage as needed. The overhead of this net-
work access is relatively small and a mechanism such as this is needed due to the lack
of hardware sensors on each node. In the future, we plan to augment this framework
using a more robust collection mechanism for independent cluster node measurement.
Our initial research focus is currently on intra-node decisions so the power measure-
ment method is not a limiting factor. Single node measurements are used to extrapolate
expected system power usage for multiple nodes.
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3 Implementation

As previously discussed in Section 2.3, there are two primary components in our im-
plementation for managing power. The GPA assigns the local power limit based on the
aggregate circuit capacity and information received from all cluster nodes. The LPA
is responsible for ensuring the target power usage of an individual node is met. Each
of these is a separate daemon process and both are implemented as non-priviledged
processes.

3.1 Local Power Agent

The LPA is the aggregated power control framework for all devices in a cluster node. It
is responsible for maintaining a power target and listening for inbound communication
on the PMB. Each device has its inherent power characteristics coordinated with other
devices by this agent. The PMB provides an abstraction between the idiosyncrasies
inherent in each device and the general controller routine. Each device has several gears
the LPA manipulates to control overall system power using a device specific routine
exposed to the controller.

To simplify the interface to device gears, we regard the lowest power usage gear as
the highest numbered performance gear. Thus, performance gear 0 in the state array for
each device is the highest power usage gear. Although this is our internal convention,
we still refer to increasing the performance gear as an increase in the power usage gear.

The primary focus of the LPA is determining the target power based on the limit
assigned by the GPA. This derivation remains flexible to have different policies imple-
mented depending on the behavior desired. Two sample policies include one based on
overall load and another might be to optimize for a performance delay characteristic.
This policy is not restricted to a single rule, a combination of rules could certainly be
employed.

A feedback controller manipulates device gears to meet the target system power set
by the policy. To maintain the local power limit, the controller employs a predictor to
determine the expected usage in the next epoch. We regard the power limit as an upper
bound on instantaneous power usage. A sampling window of size w facilitates keeping
system power close to the target. In the initial implementation, the window size is 30
seconds. To prevent excessive gear switching and allow stabilization, a minimum time
between changes is enforced. This delay also helps manage the differing capabilities of
devices and their subsequent ability to transition to different gears in a specified time
interval.

The core controller uses a PID algorithm [6]. If system power is denoted as S and
the average power target is μ, the error is ε = μ − S. Next, the controller calculates
joules used in the epoch using je = te · ε. With instantaneous error known and gain
constants G1, G2, and G3, the energy surplus or deficit is

ηe = G1 · je + G2 ·
∫ w

0
jedt + G3 · (je − je−1).

With ηe known, a prediction for the next epoch is determined to ensure the node
power limit is not exceeded. For this prediction δ, we find δ = max(je − je−1, δ).
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A non-uniform distribution of δ values exist for each performance gear. Thus, a table
is managed at runtime that represents the quantization of discrete power step values at
a resolution defined at compile time for each gear. It is pessimistic due to using the
highest value seen in subsequent predictions. The estimator Pe for the expected power
usage in the next epoch is then found using

Pe = S +
δ + ((je − je−1) − (je−1 − je−2))

te
.

The LPA does not have a strict power limit. Instead, a burstable region exists above
and below the GPA assigned limit. The impact to the feedback controller is that if given
a burst allocation of τ and limit of ω, it is τ + ω that is regarded as the true limit. The
burst allocation allows nodes to respond more rapidly to workload demands in lower
performance gears. The current implementation regards the burstable region above the
power limit as a soft limit so Pe is compared to τ + ω to determine if an immedi-
ate gear reduction is needed. If no immediate correction is necessary, ηe is checked
against a threshold preset on LPA startup. If the threshold is exceeded and ηe < 0
(implies overusage) the CPU gear is decreased. The inverse condition of ηe > 0
increases the gear

3.2 Global Power Agent

The GPA’s responsibility is to allocate the node power limit based on state information
received from all nodes in the PMG. For reliability and scalability, each individual
node is responsible for determining the power limit. Although there is explicit trust
in ensuring all nodes are well-behaved, this precondition should be acceptable in many
environments. All nodes in the PMG are synchronized by periodic UDP broadcasts.
Nodes are added or removed from the subnet with corresponding changes done to power
limits per the specific policy engine implementation.

Power Management Groups. The cluster management policy is shared on all nodes in
the current implementation. To allow for multiple logical assignments and allocations
on the same broadcast subnet, a cluster identifier is configured for each GPA on daemon
startup and is referred to as the PMG. The cluster data structure is an AVL tree, so
tree operations are bounded by O(lg n) where n is the number of PMG nodes (non-
member broadcasts are simply ignored). A dedicated thread is responsible for receiving
UDP packets describing the state of other nodes in the PMG as well as reacting to
administrative commands (further explained below). This thread uses select() with a
timeout to prune the tree based on the time stamp of the last broadcast received for
a cluster node and a predetermined maximum broadcast retention value. Within the
current implementation, this value is 30 seconds and the broadcast rate is once per
second.

Broadcast Messages. There are two types of broadcast messages currently sent to
participants in a PMG. First, broadcast data packets are sent containing a node’s current
power usage, limit, burst, and target values. In addition, a sequence number is sent that
all cluster members use to ensure decisions are computed in a coordinated fashion. This
sequence number is initially generated by the first node on a subnet.
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In addition to data packets from other members in the PMG, administrative mes-
sages can be broadcast to all nodes. Such notifications consist of modifications to the
overall power limit to be used by the policy engine of the GPA as well as for setting an
immediate administrative node limit used by a support tool. Membership in a PMG is
further refined to be either active or passive. In passive mode, broadcasts are sent and
received as normal, but inbound administrative messages are ignored. In active mode,
the node responds to administrative messages.

3.3 Support Tools

Although the long-term intent of the power management framework is to be totally
autonomic in operation, the current implementation receives instructions from support
tools. Tied into the same communicative protocol as the GPA, a console application
monitors the state of either a specific PMG or all nodes running on a given subnet. For
administrative control of a given node, a tool exists to interface directly with the LPA
(as does the GPA) through shared memory or by sending messages on the PMB. For
remote requests, the tool communicates indirectly through the remote node’s GPA.

4 Results

We evaluated the initial prototype and model on the architecture previously mentioned
in Section 2.4. To examine the nature of the tradeoff between throughput and power,
we first constructed a series of synthetic CGI [7] programs runnable by an Apache 2.0
web server. We used httperf [8] to generate a sustained workload by using four cluster
nodes configured as request clients. A single server was setup to handle requests and
clients were configured to overload the server based on a request timeout of five seconds.
When the aggregate number of errors for all clients exceeded five percent, we considered
the throughput for the server to be maximized for a given performance gear. For the
time alloted for a benchmark (30 seconds), the average system power consumption was
calculated using the multimeters. Due to the high number of nodes needed to generate
the workload effectively and current limitations measuring system power, extrapolations
based on single node measurements are used to show how effective the solution performs
when increasing the number of nodes. An additional cluster node is also used to control
the request clients and collect the measured values for reporting purposes.

Our results notation depicts the highest performance gear (and highest power con-
sumption gear) as zero. A consistent theme emerges from the synthesized benchmarks.
The highest performing gear does not have the highest performance (i.e., throughput)
per unit power. To illustrate this difference in power with respect to throughput, con-
sider Figure 3. It shows the resultant increase in power from gear 1 to 0 is approxi-
mately 12.57%; however, the throughput gain is only 6.25%. In contrast, the increase in
throughput from gear 6 to 5 is 25% with only a 6.19% increase in average power usage.

Table 2 depicts the raw data collected in this benchmark. In an environment such
as this, it is possible to reduce the CPU performance gear to conserve power and in-
crease the number of nodes to service that load and still decrease total power con-
sumption. This is shown by a simple example and the data in Table 2. If the service
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trade-off

Table 2. Power and throughput details for
merge sort

Gear Throughput Change Power Change

0 10200 6.25% 136.63 12.57%
1 9600 14.29% 121.37 7.65%
2 8400 7.69% 112.74 6.41%
3 7800 8.33% 105.95 8.49%
4 7200 20.00% 97.66 6.66%
5 6000 25.00% 91.56 6.19%
6 4800 86.22

Table 3. Throughput gains with a 600 watt
power limit and static gear assignment

Nodes Gear Throughput Power Gain

4 0 40800 546.52
4 1 38400 485.48 -0.06%
5 2 42000 563.70 0.03%
6 3 46800 529.75 12.82%
6 4 43200 585.96 5.56%
6 5 36000 549.36 -11.76%
6 6 28800 517.32 -41.67%

Table 4. Power and throughput details for in-
sertion sort

Gear Throughput Change Power Change

0 10800 12.5% 140.87 11.40%
1 9600 6.67% 126.45 6.87%
2 9000 7.14% 118.32 6.06%
3 8400 7.69% 111.56 8.23%
4 7800 18.18% 103.08 7.84%
5 6600 37.50% 95.59 6.91%
6 4800 89.41

requirement states the desired throughput is 36000 connections in 30 seconds (with a
client request timeout of 5 seconds), 5 cluster nodes as configured in our architecture
meet this requirement running in gear 4. The subsequent total power usage is approxi-
mately 5 · 97.66 = 488 watts. Four similarly configured servers (without managing the
power proactively) could also service this same load; however, the total power usage is
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Table 5. Fixed gear throughput, aggregate
power, and ideal node power usage (Pgear =

Pglobal/N ).

N Gear Throughput Power (W) Pgear (W)

3 0 62745 425.43 183.33
4 1 77184 507.92 137.50
4 2 71728 476.96 137.50
4 3 64052 444.96 137.50
5 4 71895 514.40 110.00
5 5 57805 480.10 110.00
6 6 53652 541.38 91.67

10 0 209150 1418.10 150.00
11 1 212256 1396.78 136.36
12 2 215184 1464.32 125.00
13 3 208169 1446.12 115.38
14 4 201306 1440.32 107.14
15 5 173415 1440.30 100.00
16 6 143072 1443.68 93.75

Table 6. Dynamic gear throughput and aggre-
gate power using the LPA (ω = Pgear).

N Throughput Power (W) ω (W)

4 81600 546.96 137.50
5 81745 547.70 110.00
6 63204 544.86 91.67

11 224103 1498.09 136.36
12 229584 1498.68 125.00
13 216112 1464.32 115.38
14 210826 1477.84 107.14
15 182700 1500.00 100.00
16 141232 1478.88 93.75

4 · 136.63 = 547 watts. This example illustrates a decrease of about 11% in total power
needed. Of the 10 benchmarks created, 9 exhibit the general trend depicted in Figure 3.

The preceding example used an increase in nodes to show the benefit in conforming
to a lower power limit. In addition, this same data is used in Table 3 to reflect additional
gains in throughput. Notice the gain in throughput at gear 3 is nearly 13% despite the
70.25 Watts of unused power. Without a more proactive means of power allocation (i.e.,
an LPA) this represents a loss in throughput.

The preceeding examples help motivate our research but do not reflect the strict
representation of all applications. For instance, an exception to the high difference of
power and throughput at gear 0 was exhibited in one of our synthentic benchmarks.
The resulting power-throughput relationship in Table 4 shows an even larger gain in
throughput at lower power gears (i.e., 6 to 5) than the preceeding example. On the other
hand, the benefit of the reduced power gear 1 (from 0) is not as pronounced.1

Another important result emerged from the affects of one benchmark. Figure 4 re-
flects no gain in throughput going from gear 3 to 2. Unfortunately, there is a 6.21%
increase in power usage for this transition. The data reveals the lower bound overload
threshold was just exceeded for gear 3 and the upper bound prevented gear 2 from addi-
tional gains. With this result, a power management policy should select the lower power
gear.

Rather than just considering total throughput in a given time interval, one can also
analyze the power needed to sustain a desirable concurrency. Figure 5 shows an ex-
ample benchmark illustrating power needed in all seven gears. Depicting the highest
performance on the left, in the slowest gear there is a 27.3% increase in concurrency to
go to the next highest gear with a corresponding increase of 6.5% in power usage. This

1 Sort-based benchmarks used the same quantity and distribution of items in all algorithms.
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is noted by comparing the leftmost points of the bottom two curves. At higher perfor-
mance gears the additional gains in concurrency are perhaps not worth the additional
power consumption. The concurrency difference is only 5% transitioning from gear 1
to 0 with an increase of 10.9% in power consumption. An opportunity cost analysis
such as this can be used in a policy controller that attempts to meet a given level of
concurrency.

To verify the efficacy of the LPA, the merge sort CGI is used as a representative
benchmark. In the first data set, a 1500 Watt limit is established and extrapolation
starts with 10 nodes. This allows an interpolated point to occur between each static
gear assignment. In the second data set, a 550 Watt limit is used and extrapolation starts
at 3 nodes. To reduce variability and ensure an adequate length of time for the test,
throughput measurements were obtained after sustained load was applied for 60 sec-
onds. Throughput was again considered maximized based on a 5 second timeout using
4 cluster nodes as request clients. Table 5 depicts the results of the static assignment.
Total effective throughput is found by subtracting the number of errors from the total
connections. Based on the number of nodes and the ideal power limit, the interpolated
results using the LPA are shown in Table 6.
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Fig. 6. LPA performance with target power set to Pgear using 1500 Watts starting with 10 nodes

Figures 6 and 7 illustrate the benefit of overprovisioning using the data from Ta-
bles 5 and 6. There are two lines depicting throughput, one for an individual node
and the other for extrapolated aggregate values. As expected, the individual throughput
decreases as available power is reduced. The aggregate throughput curve shows the per-
formance of a cluster. When the power decrease crosses a vertical bar representing the
ideal power usage, another node is supported within the power limit. It is important to
note that the highest cluster throughput is not the best performance state in both figures.

As the raw data in Tables 5 and 6 show, there is a 7.15% gain in throughput between
gears 0 and 1 for 11 nodes. In addition, there is a 6.69% gain in throughput between
a staticly assigned gear 2 and the LPA using 12 nodes. Notice that after gear 2, there
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Fig. 7. LPA performance with target power set to Pgear using 550 Watts starting with 3 nodes

is no resultant benefit from increasing the number of nodes. Additional consideration
is warranted if considering an environment, subject to this same limit, that does no
proactive management of performance gears. In such a case, only 10 nodes can exist
under the limit so the resulting throughput benefit of the LPA using 12 nodes is 9.77%.
Clearly these benefits are dependent on the power capacity available and the number
of nodes. If starting with 3 nodes, the benefit from a statically assigned solution is
approximately 5.91% using 4 nodes at gear 1; moreover, the gain from an unmanaged
3 node solution is 30.28% with a cluster of 5 LPA managed nodes.

5 Related Work

The case for a closer relationship between the operating system and power management
is explored in [9,10]. Flinn and Satyanarayanan [11,12] show that coordination with
applications can yield significant power savings. Dynamic voltage scaling (changing
both frequency and voltage) to reduce power consumption was explored in [13, 17] A
vast amount of research has been done with regards to energy conservation (EC) on
mobile platforms [18, 22]. The role of EC is complimentary to our goal of efficient
power allocation. Power represents the instantaneous energy used at a specific point in
time and energy is the usage of power in a defined interval. Our strategy maximizes
throughput constrained by the limit using a target power. This power target could be
derived from an EC policy; however, it is not a necessary condition.

Power management in commercial servers is important for web servers [23,24].
Much of this work relies on load balancers to distribute work. An investigation of load
balancing was done in [25,26] to turn cluster nodes on or off based on load. Addi-
tional research has also been done by Elnozahy et al. [27] for developing mechanisms
for energy-efficient clusters using combinations of IVS, CVS, and VOVO policies. Al-
though the VOVO policy is not considered in our initial implementation, its importance
is less significant in a mixed architecture environment. In [28], an economic approach is
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chosen to determine the minimal number of servers required to handle load. Unlike [28]
we favor a decentralized approach and seek to maximize throughput. In [29], Sharma et
al. applies real-time techniques to web servers in order to conserve energy and maintain
QoS. Managing to service metrics is one instance of a target power allocation mecha-
nism in our local controller.

In server farms, disk energy consumption is also important. One study of four en-
ergy conservation schemes concludes by stating that reducing spindle speed is the only
option for clusters [30]. DRPM is a scheme to modulate the speed of the disk dynam-
ically to save energy [31,32] rather than stopping disk rotation. We plan to investigate
this approach in our framework in future efforts.

While analyzing energy efficiency and operating points in [33], it is found that the
most energy efficient gear is not always the lower performance point with their concept
of critical power slope. Research such as in [34] focus on uniform workload distribution
with migratable loads. This work has a contribution towards policy development in the
management of power limits. The approach of estimating power consumption using
performance counters is taken in [35, 37] and is complimentary to our notion of target
power assignment.

6 Future Work

This paper has investigated the potential of overprovisioning in data centers with a
focus on increasing throughput based on a defined power limit. We have presented the
preliminary framework used for our research but it only represents an initial foray into
the realm of distributed and local power control. Consistent with our approach to make
the overall local and global mechanisms perform in a “hands free” operation, we are
investigating adjustments to our local controller that will tune it automatically based
on the demands of individual devices. Additional work is also needed with regards to
optimizing local and global target power policies. Although target power usage has been
explored, research on regarding the power limit as an unsurpassable barrier is underway
along with providing intra-node differentiated service.

The status of our GPA is constrained due to a limited system for power measure-
ment. A robust implementation is planned to enable future emphasis on nonuniform
workloads and heterogeneous architectures. Greater focus and future efforts will also
address current shortfalls with regards to initial node power on, synchronization of
broadcast data and timing irregularities, and simultaneous cluster node adjustments.
The latter will enable us to maintain a tighter upper bound on the true global power
limit. The Power Exchange Protocol will also be enhanced with additional capabilities
to request or deliver power to any node in the cluster within a transactional framework.
This is planned for the direct reallocation of power to handle predictive power condi-
tions not accounted for in the global allocation strategy.

We have presented a framework to handle safe overprovisioning based on power
limits. We have motivated the objective and goals for our research based on preliminary
data collected. The additional throughput gains possible from a strategy to manage the
power limit can help increase the computational effectiveness of data centers without
causing difficulties with existing power infrastructure.
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Laptop
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Abstract. The purpose of this work was to obtain a component-wise
breakdown of the power consumption a modern laptop. We measured
the power usage of the key components in an IBM ThinkPad R40 lap-
top using an Agilent Oscilloscope and current probes. We obtained the
power consumption for the CPU, optical drive, hard disk, display, graph-
ics card, memory, and wireless card subsystems–either through direct
measurement or subtractive measurement and calculation. Moreover, we
measured the power consumption of each component for a variety of
workloads. We found that total system power consumption varies a lot
(8 W to 30 W) depending on the workload, and moreover that the dis-
tribution of power consumption among the components varies even more
widely. We also found that though power saving techniques such as DVS
can reduce CPU power considerably, the total system power is still domi-
nated by CPU power in the case of CPU intensive workloads. The display
is the other main source of power consumption in a laptop; it dominates
when the CPU is idle. We also found that reducing the backlight bright-
ness can reduce the system power significantly, more than any other
display power saving techniques. Finally, we observed OS differences in
the power consumption.

1 Introduction

Mobile systems have become increasingly more powerful, but they depend on a
battery, which can only power it for a limited time. To extend the battery life,
we need to reduce system power without compromising performance. This has
motivated newer portable computers to feature components that support several
power modes. Examples include processor Dynamic Voltage Scaling (DVS), low
power modes in RAMBUS DRAM, wireless card radio power modes, and others.
Moreover, there is a big research initiative to exploit these component level power
management features for reducing power consumption. For instance, the GRACE-
OS scheduler sets the CPU speed based on application demand [1], power aware
page allocation puts active pages on a minimal set of memory chips [2], and co-
operative I/O queues hard disk accesses to maximize the standby time [3].

A component-wise power consumption breakdown is necessary for evaluating
the actual effectiveness of these power management techniques. In some cases,
component level power management techniques can potentially lead to increase
in system power consumption. For example, a component that uses small fraction
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of total system power may be managed in a way that increases energy usage by
other components. Moreover, a breakdown of power consumption is essential for
guiding future research in power management. Researchers will want to target
those components that are currently using the most power.

Our work sought to obtain this breakdown of power consumption. We ob-
tained the power usage of the CPU, optical drive, hard disk, display, graphics
card, memory, and wireless card subsystems. We further compiled this break-
down for each of a variety of workloads, to reflect how such numbers would differ
for laptops being used in different environments.

To obtain the power consumption breakdown, we performed measurements
in several phases. The first phase involved stripping the system to the mini-
mum configuration that would still be usable. The next was measuring, either
directly or subtractively, the power consumption of each component in all possi-
ble power modes. The third step was to run several benchmarks, and determine
the component-wise power consumption. The fourth step was to determine the
power consumption of the components not in the stripped system. The final step
was to determine the component-wise power consumption for the workloads that
used these additional components.

The main results of this study are:

– Total system power varies considerably depending on workloads.
– CPU power dominates, in spite of DVS, for many applications.
– Display power, which is affected most by backlight brightness, dominates

when system is idle.
– Graphics, wireless and optical drives are major power consumers only in

specific workloads.

The rest of the paper is organized as follows: Section 2 describes the experi-
mental setup. Section 3 presents the methodology in detail. Section 4 compiles
the results of our experiments and Section 5 discusses them. Section 6 examines
related work and we conclude in Section 7.

2 Experimental Setup

The experimental setup consisted of three main elements, the testing platform
(a laptop), the measurement apparatus, and the software to be run while doing
the measurement.

2.1 Testing Platform

The measurements were performed on an IBM ThinkPad R40 laptop. The laptop
was ideal for this study as it is representative of the current breed of laptops
in performance and battery life (nearly five hours on a single battery). Table 1
shows the major features of this laptop.
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Table 1. Test platform details

Component Details
Processor 1.3 GHz Pentium M

Memory 256 MB

Hard Drive 40 GB @ 4200 RPM

Optical Drive CD-R/RW, DVD

Wireless Networking Intel Pro Wireless 2100

Screen 14.1” 1048 x 768

2.2 Measurement Apparatus

The main element of the measurement apparatus was a 50 MHz, Agilent 54621A
analog oscilloscope. This oscilloscope had some very handy features such as
MegaZoom, and math functions. To measure the voltage, we used a standard
voltage probe. To measure current we used the Agilent N2774A current probe.
This probe allowed us to measure current without breaking circuits. A limitation
of this probe is that it needs to be clamped around the wire for which it is
measuring current. As a result, we could not directly measure current used by
devices that are directly soldered on, or are slotted into the motherboard. For
most of the measurements presented, we averaged our measurements over five
seconds and repeated multiple times.

2.3 Software

Since major goal of this project was to examine the workload-dependent na-
ture of a laptop’s power consumption, we used a variety of workloads to rep-
resent a wide range of tasks that may be performed on the machine. Moreover
we needed several measurements for obtaining a component-wise breakdown of
power consumption, and thus each workload had to be completely reproducible.
Our workloads included the PCMark and 3DMark benchmarks, as well as mul-
timedia playback and an FTP download and upload.

PCMark2002 consists of separate CPU, memory, and hard drive performance
tests, as well as a combined ”crunch test.” These tests, while synthetic, are
representative of the CPU, memory, and hard drive intensive tasks performed
by typical home and office applications.

A stress test for any machine is 3D games. To measure the power consumption
that might be typical during gameplay, we used the 3DMark2001 SE benchmark.
This benchmark tests the performance of the CPU, memory system, and graphics
controller by rendering 3D scenes representative of modern 3D games.

For measuring the power consumption that could be expected during Internet
usage, we used FTP over a wireless LAN. FTP stresses the wireless LAN card
and the hard drive, as is typical during Internet downloads.

For measuring the power consumed by multimedia applications, we played
an audio CD. This stresses the optical drive, as well as some I/O subsystems.
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3 Methodology

We initially envisioned performing direct measurements for power consumption
of all components, but the limitations of the setup made this difficult. So, we
divided the components into categories by the method by which they were mea-
sured:

1. Directly measurable - Hard drive, LCD/backlight, Speakers, Cooling Fan.
2. Indirectly measurable

(a) Non-removable - Processor, Memory, Graphics.
(b) Removable - Wireless card, Optical Drive, Modem, USB/1394 Ports

(turned off)

The power consumption for the components in the first category, as well
as the system power, was obtained using direct measurement with the current
probe. For the second category, we used subtractive measurement. The basic
idea is that for each benchmark we obtained the power consumption of the
entire system with a given component in several different modes. The difference
between these measurements gives the power consumption of the component.

The power measurement was conducted in several phases. The first was to
strip the system to the minimum configuration that would still be usable, i.e.
containing only the directly measurable and non-removable components. The
next was to measure either directly or subtractively, the power consumption of
these components in each possible state. The third step was to run the PCMark
and 3DMark benchmarks, determining the component-wise power consumption.
The fourth step was to determine the power consumption of the components
not in the stripped system, including the DVD drive and the wireless LAN card.
The final step was to determine the component-wise power consumption for the
workloads that used these additional components.

The first phase of the power measurement was to strip the system to its
minimal configuration and gaining access to the directly measurable components,
which required disassembling the laptop. This disassembly was done following
the steps in the notebook service manual [9]. This process was time-consuming,
as we had to keep track of all the disassembled parts, and avoid static discharge
once the outer case was removed. The modular design of modern notebooks
has made them easier to open, but it has also them difficult to use for power
measurement, as most of the modules are connected without wires (they plug
into sockets that are soldered on to the motherboard).

Once the laptop was disassembled, the power supplies for the directly mea-
surable components had to be identified and isolated. One of these components
was the LCD display system. The LCD assembly on the R40 consists of two
major components: the LCD panel and the inverter card that powers the back-
light. The connector between the motherboard and the LCD assembly consisted
of nearly 40 wires bundled together. This together with the unavailability of
datasheets for the LCD panel and the backlight made the task of identifying the
power supply wires challenging. However, the wires coming out of the sockets
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Table 2. HDD power consumption

Hard Drive State Power Consumption
Idle .575 W

Standby .173 W

Read 2.78 W

Write 2.19 W

Copy 2.29 W

on the inverter card and LCD panel were laid out separately in a transparent
ribbon cable behind the LCD panel, and so after unbundling the wires we could
separate them into smaller bundles by whether they went to the inverter for the
backlight or to the LCD panel, and further separate these wires by the voltages
we measured at their ends.

Another measurable component that did not have a separate power connector
was the hard drive. In fact the hard drive was connected directly to a female
connector on the motherboard, with 4 of the pins on the connector used for
the power supply. To isolate these, we made an intermediate connector from
two series-connected 44-pin laptop IDE cables, with the four power supply wires
separated from the main cable.

We made an additional intermediate connector for the system power supply;
this intermediate connector exposed the terminals of the connector to enable
voltage measurement and separated the plus and minus wires to allow easy
connection to the current probe.

Once we had access to the measurable component power supplies, we pro-
ceeded to measuring the power consumption of the components in the stripped
system, specifically the hard drive, display, CPU, memory, and graphics con-
troller, as well as the power loss through the system power supply.

The hard drive power was measured using the direct measurement method.
The HDD on the R40 laptop had three power states, namely standby, idle and
active. The standby state is the lowest power state in which the HDD motor is
not spinning. Next is the idle state in which the HDD is spinning but no data is
being transferred. Finally, the HDD is in the active state when data is being read
or written. The power options in Windows OS allows setting the time after which
the hard drive should be put to standby power mode. This value was set to three
minutes, and the current going into the HDD was measured over a period of 500
seconds. The measurements showed the power state transitions, and the values
obtained are summarized in the top rows of Table 2. To measure the active state
power, the read, write and copy tests of the PCMark2002 benchmark suite were
used. The power consumption averaged over a fixed number of reads, writes and
copies is summarized in the bottom rows of Table 2.

The LCD panel operating voltage and current were directly measured us-
ing the probes. The initial measurements were done with the typical Windows
background. The LCD panel current showed no variation while the backlight
brightness was changed. Measurements were also obtained when LCD panel dis-
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Table 3. Effect of display color on LCD power

Background Color Power Consumption
Black 1.01 W

White 0.93 W

Windows default background 0.99 W

played a completely white, and a completely black background. Finally, color
bit-depth for the pixel was varied from 16 bit to 32 bit in Windows, and from
8 bit to 16 bit to 32 bit in Linux for all the three backgrounds. The results
obtained from the measurements are summarized in Table 3.

No measurable difference was seen either at the LCD panel, backlight or the
system power consumption when the color bit-depth was changed.

The power consumption of the LCD backlight was obtained by performing
a direct measurement on the current used by the backlight. The measurement
was repeated for each of the eight available brightness levels, and the values
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Fig. 1. Backlight power versus brightness level

Table 4. System power consumption (Watts) under Linux and Windows with CPU
idle and maximized

Frequency (MHz) Linux Idle Linux Max Windows Idle Windows Max
600 14.31 16.54 11.24 14.85

800 15.69 20.98

1000 15.88 22.71

1200 16.47 25.71

1300 16.9 27.45 12.84 25.53
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Table 5. Calculated values for αC

αC Linux Windows

Lowest Idle 9.601 x 10-10 8.18 x 10-10

Highest Idle 1.321 x 10-9

Lowest Busy 5.578 x 10-9 5.46 x 10-9

Highest Busy 5.052 x 10-9

obtained are summarized in Figure 1. The backlight current showed no variation
with changes in external factors such as the color being displayed on the LCD
and the color bit-depth.

The CPU power measurement depended on the formula for power in terms
of frequency and voltage, PCPU = αCV 2f , where C is dependent on the capac-
itance of the chip and α the level of activity. Given two power measurements for
PCPU , we can calculate:

PCPU1 − PCPU2 = αCV 2
1 f1 − αCV 2

2 f2

= αC(V 2
1 f1 − V 2

2 f2)

αC =
PCPU1 − PCPU2

V 2
1 f1 − V 2

2 f2

Since PCPU = Psystem − Pother , holding Pother constant implies ΔPCPU =
ΔPsystem. Pother cannot be held exactly constant, but it can be held approx-
imately constant by either leaving the system idle or running a program that
stresses only the CPU, without touching main memory or I/O. For this mea-
surement we created a synthetic benchmark that computes several functions and
stores the results in an array. The total memory usage of this program is 470KB
as measured using top, so it exercises the 1MB cache in the Pentium M, but
does not access main memory after an initial phase.

The system power was measured under Linux and Windows, both with the
CPU idle and running the cpu-maximizer, at a variety of different CPU frequen-
cies. The results are shown table 4. From these numbers, the value of αC for an
idle CPU can be calculated using the formula; the results are shown in table 5.
Figure 2 gives the CPU power consumption obtained by using these values of αC.
We compared our results to processor power consumption number from Intel [4].

One limitation of this approach is the assumption that α is constant for differ-
ent applications, which is not necessarily the case.

The remaining components of the stripped systemwere the memory and graph-
ics chipset. The graphics card power consumption was also obtained using the sub-
tractive method. There were two main problems that we had to deal with. Firstly,
ATI has not published the electrical specifications or the power states of the de-
vice. Secondly, there was no means of turning off the device or putting it into dif-
ferent power states. Thus, we assumed a base power of 1.09 W based on the values
given in the Intel paper [4]. We obtained the active power use by subtracting the
system power for the CPU maximizer from the system power for the 3DMark2001
benchmark. The resulting maximum power consumption was 5.1 W.
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Fig. 2. CPU power consumption under Linux and Windows using calculated αC

The memory power consumption was obtained by the subtractive method in
the same manner as the graphics power. We obtained a baseline measure of its
power consumption, 0.45 W, from the manufacturer’s data sheet [8]. We then ob-
tained system power from a memory test, and subtracted from it the idle system
power and the difference in CPU power, yielding 1.42 W. For each of the bench-
marks, we computed a memory power figure in between these two by determining
the number of memory accesses each benchmark did.

One final power loss we noticed was a baseline 0.65 W loss in the power supply.
This was found by measuring the power consumption of the system when nothing
is turned on. This figure is just a baseline, and we expect that the true power
supply loss under load is substantially higher.

Once the power consumption of each of the components of the stripped sys-
tem was determined, we proceeded to measure the power consumed by the re-
movable components. Amongst these, we were specifically interested in the power
consumption of the wireless LAN card and the optical drive, as the ports on the
computer usually consume too small an amount of power to measure accurately
with the current probe.

Table 6. Wireless LAN card power consumption

Wireless Card States Power Consumption
Power Saver (Idle) 0.14 W

Base (Idle) 1.0 W

Transmit 3.12 W total at 4.2 Mb/s

Receive 2.55 W total at 2.9 Mb/s

Table 7. Power consumption of optical drive

Optical drive state Power (W)
Initial spin up 3.34

Steady spin 2.78

Reading data 5.31



Power Consumption Breakdown on a Modern Laptop 173

The power consumption of the wireless LAN card was measured using the sub-
tractive method. The wireless card has numerous power states when enabled. To
measure these, we measured the system power with the wireless card disabled, en-
abled but idle, in a power-saving state, while receiving via FTP, and while trans-
mitting via FTP. The power consumption of the system and of the wireless card
alone is shown in Table 6. The wireless card power is the difference between the
system in the given state minus the system power with the card disabled; for the
receive and transmit, we also subtracted the additional power consumed by the
CPU and hard drive.

The power consumption of the optical drive was also measured using the sub-
tractive method. First, the system power was measured with the optical drive re-
moved from the system. Then, the system power was measured with the optical
drive inserted but idle, while inserting a CD into the optical drive, while the op-
tical drive is spinning steadily, and while the optical drive is reading data. The
power consumed by the optical drive in each of these states is the system power
in that state minus the system power with no optical drive minus any additional
hard drive or CPU usage. Table 7 shows the results.

4 Results

We used several benchmarks described in the experimental setup section to an-
alyze the component-wise breakdown of power consumption. As can be seen in
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Fig. 3. Power consumption of system under various workloads
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Figure 3, the total system power varies by a factor of four depending upon the
workload. In the next section we will see the component-wise breakdown of the
system wide power, and some of the reasons that contributed to such a large
range of total system power consumption.
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Fig. 4. Breakdown of idle system power conversion with various CPU speeds and dis-
play brightness levels

Figures 4 – 8 show the component wise breakdown of the total system power.
We have categorized the power consumption into 10 categories, some of which
were described in the previous section. These include CPU, hard drive, base
power supply loss, wireless card, LCD, backlight, optical drive, memory system,
graphics card. We were unable to categorize all of the power consumption, and
so we include a rest of system category that consists of memory and interrupt
controller hub (Northbridge and Southbridge), rest of the system power supply
loss, and miscellaneous components on the motherboard.

Figure 4 shows the breakdown of idle system power consumption. The power
consumption breakdown for an idle system running without DVS and at full
backlight brightness is dominated by the display system (34%). When the CPU
is running at 600 MHz, it uses one-tenth the power used by the display system.
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Dimming the backlight does reduce the backlight power, but the display system
still accounts for one-fifth of the system power, mainly due to the one-Watt fixed
power consumption of the LCD panel.

Next, in Figure 5 we look at the breakdown for PCMark2002. During the
course of the CPU tests, the CPU power consumption dominated the total sys-
tem power consumption. Similarly, in the Memory test, CPU was used a lot for
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Fig. 7. Power consumption breakdown of audio CD playback

reading, and writing different size blocks. Though the share of memory power
consumption went up, it still was small compared to the CPU or Display power.
Finally, the breakdown of power consumption for the Hard Drive tests shows
equal power consumption by the Hard Drive and the CPU. This is not sur-
prising as most of the time was spent in reading/writing to the disk. Also, we
note the power consumed by the rest of the system increases dramatically; this
may be because of the increased IDE controller activity that is included in this
category.

Figure 6 shows the breakdown for power consumed during a wireless FTP
upload and download of the same file. This breakdown is very similar to the
Hard Drive tests, as both loaded the CPU by around 6%, and both devices
use around 2-3 W of power when active. Transmit was slightly more expensive
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than receive, but comparison is not fair as the transmit speed through TCP was
slightly higher than the receive speed.

We can see in Figure 7 that the optical drive uses a lot of power, even more
than the processor, during an audio CD playback. This is because the CD was
spinning at full speed for the whole duration of the track.

Figure 8 shows the breakdown of power consumption during 3DMark. Not
surprisingly, CPU dominates, while graphics comes in a distant second.

5 Discussion

This study provided some useful insights into the power consumption behav-
ior of the individual components, and the manner in which the OS uses these
components.

5.1 CPU

This study showed empirical evidence for the fact that DVS saves power, and
that these savings are significant enough to contribute to a lower total system
power.

A power aware OS can reduce component wise power consumption by ex-
ploiting the various low power states supported by a device. In our study we
found that the total Idle System power consumption went up when we were run-
ning Linux OS compared to the power consumption under Windows OS. This
can be attributed to the fact that Linux Kernel we were using did not have
support for ACPI, and even after upgrading the kernel we were not able to get
ACPI working under Linux. Windows OS on the other hand provides user with
a GUI to set the power preferences.

Even though DVS reduces CPU power consumption, CPU still dominates
whenever it is extensively used by an application. Using DVS can reduce the
CPU power, but lowered frequency and thereby increased execution time may
not be acceptable to all users. This implies that there is a lot more room for
work in the area of CPU power reduction.

5.2 Hard Drive

One of the interesting observations made during this study was the mysterious
Hard Drive accesses made by Windows OS when the drive was in Idle state.
These accesses had a frequency of 150 ms and they increased the power con-
sumption of the disk by 0.2 W. Linux OS did not show any such behavior.

5.3 LCD

The relation between LCD power and the color being displayed validates similar
findings in adaptive display literature [10]. This also makes a case for light colored
screensavers, as the traditional Windows XP screensaver increased the system
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power consumption by 0.5 W. We also tested the idea of reducing color bit-
depth to save power, as proposed in the display system community [10]. We
found that for our platform such a scheme did not save any power, either at
the LCD panel or the system level. The power reduction that we observed by
reducing the backlight brightness level strongly supports automatic brightness
reduction as performed by Display Power Saving Technology [11].

5.4 Graphics

From the results, the graphics chipset does not consume a large fraction of the
system power except when using 3D acceleration, and even then the graphics
chipset only consumes about 17% of the total system power. However, the ma-
chine we are measuring contains an older Radeon 7500 chip; newer, faster chips
such as the Radeon 9600 may use considerably more power.

Some of the new areas for power savings are certainly at the circuit level, for
example the chipset power consumption, and the power supply loss are a major
portion of the Idle System power.

5.5 Limitations

The accuracy of our results is limited by several factors. One important limitation
is the limits of the power measurement apparatus, particularly the current probe.
Agilent’s own documentation notes that the probe has a margin of error of
+/- 2 mA. Moreover, because the probe works by detecting the magnetic field
generated by current flow rather than by directly measuring the current flow, it
is susceptible to influence by external magnetic fields. Strong magnetic fields can
raise the error margin as high as 20 mA, though the fields in our test environment
were fairly small.

Another factor limiting the accuracy of our results was the subtractive method.
Because of this method, small errors (¡ 1%) in the system power measurement
can translate to very large errors measuring low-power components, as 1% of
system power is about 0.15 W. Moreover, because of the inexact methods used
to get subtractive measurements of memory, graphics, and the power supply, the
measurements in those categories should be regarded as estimates.

A major limitation of this project is that we were unable to get a component-
wise breakdown of much of the power consumed by the system. From 14% to 38%
of the system power is classified as ”rest of platform.” Although the information
we have discovered is useful, a breakdown of this unclassified power consumption
would allow even more insight.

Finally, this project has focused only on the power consumption of the elec-
tronic and mechanical parts of the computer, and has completely neglected the
idiosyncrasies of the battery. Proper battery management is as crucial to good
battery life as reduced power consumption. A future project of this type should
also try to assess how much energy the battery wastes under various workloads
and drain rates.
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6 Related Work

There have been few other studies on breakdown of laptop’s power consumption.
Intel recently published a paper describing the reduced power consumption of
Centrino platform [4][12]. This paper also included a power consumption break-
down, but it does not give much detail on the methodology or the system and
the workload that was measured. The breakdown that we obtained for the Idle
System with DVS is very similar to the breakdown given in that paper. Another
work related to ours is [5], which uses a combination of software profiler and data
obtained from industry to come up with a similar breakdown. Although this work
is very detailed and informative, it was done a long time ago, and the hardware
has since become outdated. Comparing our breakdown numbers to those given
in Lorch’s paper, we found that the total system power has nearly doubled, but
the share of each component has not changed drastically. Our work is different
from Lorch’s work as we explore the application-dependent nature of a laptop’s
power consumption whereas his work measures the power consumption under a
representative or average set of power states obtained through profiling. There
have been several recent studies on power consumption of a hand-held device
cignetti [7], but these numbers are not representative of a laptop. Some of the
notable differences are that hand-held devices do not have hard drive or graphics
card.

7 Conclusions

The purpose of this work was to obtain a component-wise breakdown of the
power consumption in a modern laptop. We measured the power usage of the
key components in an IBM ThinkPad R40 laptop using an Agilent Oscilloscope
and current probes. We obtained the system wide power consumption breakdown
for the following components: CPU, optical drive, hard disk, display, graphics
card, memory, and wireless card subsystems. Due to the limitations of our mea-
surement equipment, we had to use a combination of direct measurement and
subtractive measurement approaches.

We found that total system power consumption varies a lot (8 W - 30 W)
depending on the workload. We also found that, although power saving tech-
niques such as DVS can reduce CPU power considerably, the total system power
is still dominated by CPU power in the case of CPU intensive benchmarks. The
display is the other main source of power consumption in a laptop. We found
that reducing the backlight brightness can reduce the system power significantly,
more than any other display power saving techniques. The graphics, wireless net-
working, and disk drives can all consume a substantial amount of power when
they are active, but when they are idle, as is the case most of the time, they
do not consume too much. Finally, we observed that power consumption un-
der Windows OS differs from power consumption under Linux, probably due to
differences in ACPI support.

Last but not the least, we were successful in not destroying the laptop (a fear
of all our colleagues).
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Erratum

Editorial Board

Abstract. Due to an unfortunate error, the conference location and
date was not correct in the original online version of this volume. It
should be “4th International Workshop, PACS 2004, Portland, OR, USA,
December 5, 2004”.
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